化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:51:47
化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
由和差化积公式:
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
得
cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
=2cos(nπ+x)cos(π/2)
=0
cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
=cos(πn+π/4+x)+cos(πn-π/4+x)
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
上式=2cos[(πn+π/4+x+πn-π/4+x)/2]cos[(πn+π/4+x-πn+π/4-x)/2]
=2cos[(2πn+2x)/2]cos[(π/2)/2]=0
化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
化简( cos(4n-1/4π+x)·sin(4n+1/4π-x)(n∈Z)化简( cos(4n-1/4π+x)·sin(4n+1/4π-x)(n∈Z)
如何求 lim(n→∞)cos(x/2)cos(x/4)...cos(x/2n)
试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0
【1】化简:sin(a-5π)/cos(3π-a)×cos(π/2-a)/sin(a-3π)×cos(8π-a)/sin(-a-4π)【2】已知f(x)=sin(nπ-x)cos(nx+x)/cos[(n+1)π-x]×tan(x-nπ)cot(nπ/2+x)(n∈Z),求f(7/6π)
化简:cos((6n+1)/6*π+x)+cos((6n-1)/6*π-x)(n属于z)
证明cos【(4n+1)π/4+x】-cos[(4n-1)π/4-x]=0(n属于z)
化简cos{[(4n+1)π/4]+α}+cos{[(4n-1)π/4]-α},(n∈Z)
请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
化简:cos(π/4-x)乘cos(π/4+x)
已知向量m=(根号3sin(x/4),1),向量n=(cos(x/4),cos^2(x/4)),若m.n=1求cos(x+π/3)的值
化简1+sin x/cos x·sin2x/2cos²(π/4-x/2)
已知向量m=(根号3sin(x/4),1),向量n=(cos(x/4),cos^2(x/4))(1)若m.n=1,求cos(2π/3-x)值.(2)记f(x)=m.n,在△ABC中,ABC对边为abc,满足(2a-c)cosB=bccosC,求f(A)取值范围.
已知向量m=(根号3*sin(x/4),1),向量n=(cos(x/4),cos^2(x/4))(1)若 向量m * 向量n =1,求cos(2π/3 - x)的值(2)记f(x)=向量m * 向量n,在三角形ABC中,角ABC所对边分别为abc,且满足(2a-c)cosB
(-1)^n*cosx=cos(x+nπ)
化简(1)cos^2(π/4-a)+cos^2(π/4+a);(2) cos[(4n+1)/4*π+a]+cos[(4n-1)/4*π-a] (n属于z)
已知f(x)=sin(nπ-x)cos(nπ+ x)/cos[(n+1)π-x]*tan(x-nπ)(n属于Z)化简f(x)
化简sin{[(4n-1)/4]π-a}+cos{{(4n+1)/4}π-a}