请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:49:47
请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
cos(4/4n+1 π +a)+cos(4/4n-1 π -a)
=cos[(n+1/4)π+a]+cos[(n-1/4)π-a]
若n为偶数,则原式=cos(π/4+a)+cos(-π/4-a)=2cos(π/4+a);
若n为奇数,则原式=-cos(π/4+a)-cos(-π/4-a)=0
请教,化简: cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
化简cos[(4n+1)π/4+x]+cos[(4n-1)π/4+x]
试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0
化简cos{[(4n+1)π/4]+α}+cos{[(4n-1)π/4]-α},(n∈Z)
请教一道关于数列的问题.an=2cosβ[a(n-1)]-[a(n-2)];a1=2cosβ,a2=4(cosβ)^2-1.
化简(1)cos^2(π/4-a)+cos^2(π/4+a);(2) cos[(4n+1)/4*π+a]+cos[(4n-1)/4*π-a] (n属于z)
化简sin{[(4n-1)/4]π-a}+cos{{(4n+1)/4}π-a}
sin{[(4n-1)/4]π-a}·cos{{(4n+1)/4}π-a} 化简
化简sin[(4n-1)π/2-a]+cos[(4n+1)π/2-a]
化简cos{[(4n+1)π/4]+α}+cos{[(4n-1)π/4]-α},(n∈Z)没有人会吗?
cos(4/4n+1 π +a)+cos(4/4n-1 π -a) n E Z
化简( cos(4n-1/4π+x)·sin(4n+1/4π-x)(n∈Z)化简( cos(4n-1/4π+x)·sin(4n+1/4π-x)(n∈Z)
化简 sin{[(4n+1)π/4]+α}+cos{[(4n-1)π/4]-α},(n∈Z)
已知n∈Z化简sin[(4n-1/4)π-a]+cos[(4n+1/4)π-a]
化简SIN((4N-1)/4 π-A)+COS((4N+1) π-A) N属于Z
求值Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].*cos[2^nπ/(2^(n+1)+1)]
化简sin(nπ+2π/3)×cos(nπ+4π/3) n属于Z
化简:sin(nπ+a)cos(nπ-a)/cos[(n+1)π-a]