Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:52:24
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
n=1,
S1=a1=0.5(a1+1/a1) ,
两边乘a1解二方方程
解之得 a1 = 1或-1
n=2,
a1+a2=0.5(a2+1/a2)
乘a2有a2的二方方程
a1=1 解之则 a2=√2 -1或-√2-1
a1=-1解之则 a2=√2+1或-√2+1
n=3,
(a1+a2)+a3=0.5(a3+1/a3)
乘a3有a3的二方方程
由上可知,a1+a2=√2或-√2
a1+a2=√2 则 a3=√3-√2 或-√3-√2
a1+a2=-√2 则 a3=√3+√2 或-√3+√2
假设由1,2,3,...,k都已验证:
ak有√k+√(k-1)或√k-√(k-1)或-√k+√(k-1)或-√k-√(k-1) 四个可能性
而且Sk=a1+a2+...ak则有√k或-√k两个可能性
由k推k+1如下:
Sk+1=Sk+a(k+1)=0.5(a(k+1) + 1/a(k+1))
上式乘a(k+1)得a(k+1)的二次方程
若Sk=√k 解方程有 a(k+1)=√(k+1)-√k或-√(k+1)-√k
若Sk=-√k 解方程有 a(k+1)=√(k+1)+√k或-√(k+1)+√k
故
a(k+1)有√(k+1)+√k或√(k+1)-√k或-√(k+1)+√k或-√(k+1)-√k
且S(k+1)=a1+a2+...a(k+1)=√(k+1)或-√(k+1)
由数学归纳法可知,上式ak及Sk对任何整数k成立
an=√n+√(n-1)或√n-√(n-1)或-√n+√(n-1)或-√n-√(n-1)
-----------------------------------------------------------------
-----------------------------------------------------------------
-----------------------------------------------------------------
第三题在各项为正的数列{an},前n项和Sn=1/2(an+1/an)(1)求a1,a2,a3(2)猜想an通项公式(3)求Sn《今
若多一条件an>0 ,情况更易.
n=1,
S1=a1=0.5(a1+1/a1) ,
a1 = 1
n=2,
a1+a2=0.5(a2+1/a2)
a1=1 解之则 a2=√2 -1
n=3,
(a1+a2)+a3=0.5(a3+1/a3)
由上可知,a1+a2=√2
a1+a2=√2 则 a3=√3-√2
假设由1,2,3,...,k都已验证:
ak=√k+√(k-1),Sk=a1+a2+...ak=√k
由k推k+1如下:
Sk+1=Sk+a(k+1)=0.5(a(k+1) + 1/a(k+1))
上式乘a(k+1)得a(k+1)的二次方程
解之有 a(k+1)=√(k+1)-√k
故
S(k+1)=a1+a2+...a(k+1)=√(k+1)
由数学归纳法可知,上式ak及Sk对任何整数k成立
an=√n-√(n-1)