椭圆b2x2+a2y2=a2b2(a>b>0)的焦点为F1,右定点为A,上定点为B,且离心率为【(根号5)-1】/2,求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:48:03

椭圆b2x2+a2y2=a2b2(a>b>0)的焦点为F1,右定点为A,上定点为B,且离心率为【(根号5)-1】/2,求
椭圆b2x2+a2y2=a2b2(a>b>0)的焦点为F1,右定点为A,上定点为B,且离心率为【(根号5)-1】/2,求

椭圆b2x2+a2y2=a2b2(a>b>0)的焦点为F1,右定点为A,上定点为B,且离心率为【(根号5)-1】/2,求
OB = b , OA = a , OF1 = c
e = c/a =【(根号5)-1】/2 a^2 - b^2 = c^2
tg 角BAO = b/a = .
tg 角BF1O = b/c = .
tg ABF1 = tg (BF1O - BAO) =.