作业帮 > 作文素材 > 教育资讯

六年级上学期数学重点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:36:53 作文素材
六年级上学期数学重点作文素材

篇一:六年级上册数学重点考试题

六年级上册数学重点考试题 姓名 (满分100分,考试时间75分钟) 一、填一填。(每小题2分,共22分)

1.一个数由4个1和7个17 组成,这个数写作( ),它的倒数是( )。

2. 如果415 ×A=713 ×B=1,那么A-B=( )。

3.用一根铁丝围成一个圆,半径正好是10分米,如果把这根铁丝改围成一个正方形,它的边长是( )米。

4. 0.35=( )%=( )折。

5. 在一个宽4厘米,长4.2厘米的长方形中,割一个尽可能大的圆,这个圆的面积为( )

6. 全场商品八五折,如果一件衣服原价a元,现价比原价便宜了( )元。

7. 一项工程,甲单独做要用8天完成,乙单独做要用6天完成,乙比甲的工作效率快了( )%

8. 走一段路,甲用了15小时,乙用了10小时,甲与乙所行时间的最简整数比是( ),甲与乙行走的速度比的比值是( )。

9. 我国长征运载火箭进行了70次发射,其中只有7次不成功,发射的成功率是( )%。

10.一件衣服原价120元,先提价20%,后又按八折销售,现价是( )元。

11. 两地相距640千米,甲、乙两辆汽车同是从两地相向而行,4小时相遇,已知甲、乙两车的速度比是5︰3.相遇时甲车行了( )千米,乙车行了( )千米。

二、选择题(每小题2分,共10分)

1.把一根绳子剪成两段,第一段长是29 米,第二段占全长的49% ,则( )。

A.第一段长 B.第二段长 C.两段一样长

2.某种品牌的消毒柜现在售价400元,比原价降低了100元,比原价降低了( )。

A.20% B.25% C.13

1

3.下面的百分率可能大于100%的 是( )

A.出油率 B.增长率 C.出勤率

4.某体操队的人数增加25%后,又减了25%,现在的人数和原来相比( )

A、增加了 B、减少了 C、不变 D、不能确定

5. 有两条绳子,第一条用去12 米,第二条用去它的12% ,剩下部分相等,

那么( )。

A、第一条绳子长 B、 第二条绳子长

C、无法比较两条绳子的长短 D、相等

三、判断(每小题1分,共4分)

1. 圆的周长与它的直径的比值是π。( )

2.某商品打“九五折”出售,就是降价了95%出售。( )

3.把一个比的前项扩大3倍,后项缩小3倍,它的比值不变。( )

4. 小青与小华高度的比是5 :6, 小青比小华矮 。( )

四、列式计算。(9分)

(1)从4个105里减去1220的25%,差是多少?

(2)10减去它的 20%,再去除12,商是多少?

(3)一个数的5倍减去34 与23 的积,差是72 ,求这个数。(用方程解)。

2

五、解决问题。(共55分)

1.100个和尚100个馍,大和尚每人吃3个,小和尚3人吃一个,问有大小和尚各几何?

2..用电脑打一份稿件,甲单独打要8小时,乙单独打要10小时,现在甲、乙合

打,几小时完成这份稿件的 ?

3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一;这时还剩下12只桃子,那么这堆桃子有多少个?

4.张老师一次稿酬所得是3500元,按照国家税法规定,超过1600元的部分应按20%的税率缴纳个人所得税。张老师应缴纳的个人所得税是多少元?

5.筑路队修筑一段公路,第一天修了全部的 16 %,第二天修了剩下的25%,还剩140米没有修。这段公路长多少米?

6.一件商品原价1800元,先降价10%,再提价10%出售,还是1800元吗?如果不是那么是亏本还是盈利了呢?

3

7.六年级(一)班召开班会,一个男生上台向老师报告:“台下男生人数是女生的

下台后,一位女生上台说:“台下的男生人数只有女生的

8.食堂买来萝卜、青菜和土豆三种蔬菜。萝卜的质量占三种蔬菜总质量的

比土豆的少

4。”男生57。”六年级(一)班共有多少人? 82,青菜的质量53,萝卜的质量比土豆的少360千克,食堂买来萝卜多少千克? 4

9.“好运来”超市打折出销,规定购物400元(含400元)打九折,超过部分打八折。李叔叔在该超市购买一件标价为600元的夹克,他实际应付多少元?张阿姨也去该超市购物,实际付款450元。如果没有打折活动,张阿姨应付多少元?

4

篇二:人教版六年级上册数学知识点汇总

第一单元 位置

1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。

第二单元 分数乘法

1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”) 找单位“1”: 在分率句中分率的前面;或“是”、“占”、 “比” 、“ 相当于”的后面

(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

(4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×

写数量关系式技巧:

几几。

(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

(2)分率前是“的”: 单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思: 单位“1”的量×(1?分率)=分率对应量

(5)根据已知条件和问题列式解答。

12.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? 单位“1”×对应分率=对应量

(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前 “是、比、相当于、占、等于”后的规则。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,乙比甲少几分之几表示乙比甲少的数占甲的几分之几。

(甲-乙)÷乙 = 甲÷乙-1 (甲-乙)÷甲 = 1-乙÷甲

(4)江氏规则:多比少多,少比多少。如8比5多,6比9少,在应用题中如:

小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”

(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9)分率与量要对应。

①多的比较量对多的分率; ②少的比较量对少的分率; ③增加的比较量对增加的分率; ④减少的比较量对减少的分率; ⑤提高的比较量对提高的分率; ⑥降低的比较量对降低的分率; ⑦工作总量的比较量对工作总量的分率; ⑧工作效率的比较量对工作效率的分率;

⑨部分的比较量对部分的分率; ⑩总量的比较量对总量的分率;

第三单元 分数除法

1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。

3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。

4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。

6.比值通常用分数、小数和整数表示。

7.比的后项不能为0。

8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

10.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

比的应用

1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?

例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?

题目解析:60人就是男女生人数的和。

解题思路:第一步求每份:60÷(5+7)=5人

第二步求男女生:男生:5×5=25人 女生:5×7=35人。

2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?

例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

题目解析:“男生25人”就是其中的一个数量。

解题思路:第一步求每份:25÷5=5人

第二步求女生: 女生:5×7=35人。 全班:25+35=60人

3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?

例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

4、要求量=已知量×要求量份数

已知量份数

5、比在几何里的运用:

(1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。

长=周长÷2×a 宽=周长÷2×b 面积=长×宽 a?ba?b

(2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积

长=周长÷4×a

a?b?c 宽=周长÷4×ba?b?c

高=周长÷4×c

a?b?c 体积=长×宽×高

(3)已知三角形三个角的比是a:b:c,求三个内角的度数。

三个角分别为: 180×ab

a?b?c 180×a?b?c 180×ca?b?c

(4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。

三条边分别为: 周长×a

a?b?c 周长×ba?b?c 周长×ca?b?c

12.一个数(0除外)除以一个真分数,所得的商大于它本身。

13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

14.一个数(0除外)除以一个带分数,所得的商小于它本身。

已知一个数的几分之几是多少,求这个数,用除法计算; 对应量÷对应分率=单位“1” 四则混合运算

1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。

2.在分数四则混合运算中,可以应用运算定律使计算简便。

运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。

第四单元 圆

1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。它到圆上任意一点的距离都相等。

3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 用字母表示为:d=2r 或r=d 2

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,它是一个无限不循环小数,用字母π表示。在计算时,取π ≈ 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C= πd或C=2πr

12、圆的面积:圆所占面积的大小叫圆的面积。

13.把圆平均分成若干份,然后把它们剪开,可以拼成一个近似长方形的图形,这个长方形的长相当于圆的周长的一半(C=πr),长方形的宽相当于圆的半径(r),因此长方形的面积等于圆的面积,所以圆2

的面积是 πr×r=πr2

14.圆的面积公式:S=πr2 或者S= π(d)2 或者S= π(C÷π÷2)2 2

15

2 = 2r2:πr2:4r2

16 S小正:S圆:S大正=2:π :4

17R,内圆的半径是r(其中R=r+环的宽度)

圆环的面积(铺小路的面积)=大圆的面积 - 小圆的面积=πR2-πr2=π(R2-r2)

18.环形的周长=外圆周长+内圆周长

19.半圆的周长等于圆的周长的一半加直径。 半圆的周长公式:C=πd ÷ 2+d 或 C=πr+2r

20.半圆面积=圆的面积÷2 公式为:S=πr2÷ 2

21.在同一个圆里,半径扩大或缩小几倍,直径和周长也扩大或缩小相同的倍数;面积则扩大或缩小对应数平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是22:32=4:9。

23.当一个圆的半径增加a,它的周长就增加2πa;当一个圆的直径增加a,它的周长就增加πa。

24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积占圆面积的几分之几;所对的弧占圆周长的几分之几。

25.周长相等的三角形、平行四边形、长方形、正方形和圆,它们的面积依次增大。

篇三:六年级上册数学知识重点、难点

整数比化简:用比的前项和后项同时除以它们的最大公约数;

分数比化简:用前项后项同时乘分母的最小公倍数化成整数比,再按化简整

数比的方法来化简。

小数比化简:向右移动小数点的位置先转化成整数比。再按化简整数比的方

法来化简。

方法二:先用比的前项除以比的后项求出比值,再把比值改写成比的形式。

4.解决问题

(1)已知一个数的几分之几是多少,求这个数,通常用除法来计算。对于较复杂的题目有时用方程解更容易理解些。【分率对应量÷分率】

(2)求一个数是另一个数的几分之几,用除法计算。【一个数÷另一个数】

(3)求一个数比另一个数多(或少)几分之几用除法计算。【差量÷单位“1”的量】

5.数学积累。

(1)一个数除以小于1的数,商大于被除数;一个数除以1, 商等于被除数;一个数除以大于1的数,商小于被除数。

(2)黄金比是0.618:1。

第四单元 圆

1.认识圆

(1)相较于圆中心的一点叫做圆心,一般用字母O表示。连接圆心和圆上?a href="http://www.zw2.cn/zhuanti/guanyuwozuowen/" target="_blank" class="keylink">我庖坏愕南叨谓凶霭刖叮话阌米帜竢表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

(2)在同一个圆内,有无数条半径,且所有的半径长度都相等,有无数条直径,且所有的直径长度都相等。半径的长度是直径长度的一半(),直径的长度是

半径长度的2倍。

(3)在同一个圆内,两端都在圆上的所有线段中,直径最长。

(4)画圆时:圆规两脚间的距离是圆的半径。圆心决定圆的位置,半径决定圆的大小。

(5)圆是轴对称图形。圆的直径所在的直线就是圆的对称轴。一个圆有无数条对称轴。

2.圆的周长

(1)围成圆的曲线的长叫做圆的周长,一般用字母C表示。

(2)任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π表示。它是一个无限不循环小数,π=3.1415926??,实际应用中π取3.14。

(3)圆的周长计算公式

已知直径求周长:C =πd 已知半径求周长:C =2πr

3.圆的面积

(1)圆所占平面的大小叫做圆的面积。

把一个圆拼成近似长方形。这个长方形的宽=圆的半径(r);长方形的长=圆的周长的一半(πr)

因为:长方形面积 =长×宽

所以:S圆=πr×r =πr2

4.数学积累

(1)一个圆的半径扩大a倍,这个圆的直径和周长也扩大相同的倍数(a倍),面积扩大a2倍。

(2)面积相等圆、正方形和长方形比较,圆的周长最短,长方形的周长最长;反之,周长相等的圆、正方形和长方形比较,圆的面积最大,而长方形的面积最小。

(3)在正方形中画一个最大的圆(方中圆),正方形与圆的周长比与面积比都是200:157。

(4)常用π的倍数。

2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 12π=37.68 15π=47.1 16π=50.24 18π=56.52 24π=75.36 25π=78.5 32π=100.48 36π=113.04 49π=153.86 64π=200.96 1.52π=7.065 2.52π=19.625 第五单元 百分数

1.百分数的意义和写法

(1)百分数表示一个数是另一个数的百分之几。百分数也叫百分率或百分比。百分数只能表示两个数相除的关系,不能表示具体的数量,所以不能带单位。

(2)百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”来表示。

2.百分数和分数、小数互化。

(1)百分数与小数的互化

小数化成百分数:只要把小数点向右移动两位,同时添上百分号。

百分数化成小数:去掉百分号,同时把小数点向左移动两位就可以了。

(2)百分数与分数的互化

百分数化成分数:先把百分数写成分母是100的分数,再约分。

小数化成百分数:

方法一:利用分数的基本性质,把分数分母扩大或者缩小为分母是100的分数,再写成百分数形式。(这种方法简便,但有局限性)。

方法二:利用分子除以分母把分数化成小数,再化成百分数。(注意:除不尽的情况结果保留三位小数,因此分子除以分母的商要算到小数点后面第四位,用“四舍五入”法取近似值。百分号前保留一位小数。

3.解决问题

解决百分数应用题可以依照解决分数问题的方法。

(1)百分率表示一个数是另一个数的百分之几。

(2)商品有时降价出售商品,叫做打折扣销售,通称“打折”。

几折通常表示现价是原价的十分之几或百分之几。

如:二折=20% 三五折=35%

农业收成经常用“成数”来表示。如:三成五=35%

(3)纳税是根据国家税法的有关规定,按照一定的比率把集体或个人的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防等事业。 税收主要分为消费税、增值税、营业税和个人所得税等。应交税额与各种收入的比率叫税率。

税率=×100%

篇四:小学六年级数学知识点归纳(上)

小学六年级数学知识点归纳

六年级上册

知识点概念总结

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。 3.分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归

5.倒数:乘积是1的两个数叫做互为倒数。 6.分数的倒数

找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是1/12 ,12是1/12的倒数。

8.小数的倒数:

普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:

比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.

15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

17.比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。 比例的性质用于解比例。联系: 比例是由两个相等的比组成。

18.比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种形式,分数有括号的含义!

19.比和比例的联系:

比和比例有着密切联系。 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。 比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。 如果两个比相等,那么这两

个比就可以组成比例。成比例的两个比的比值一定相等。

20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示

22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。 圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

25.圆周率:圆的周长与直径的比值叫做圆周率。 圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。 直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27.周长计算公式

(1)已知直径:C=πd

(2)已知半径:C=2πr

(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)

(5)半圆的周长:1/2周长+直径(π÷2+1)

28.面积计算公式:

(1)已知半径:S=πr

(2)已知直径:S=π(d/2)

(3)已知周长:S=π[c÷(2π)]

29.百分数与分数的区别 222

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.

(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.

(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

30.百分数应用

百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。

31.百分数的意义

百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

32.日常应用

每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。

知识点扩展

1.圆的定义

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

篇五:六年级上册数学知识点(概念)归纳与整理(人教版)

六年级数学上册知识点整理

第一单元 位置

1、行和列的意义:竖排叫做列,横排叫做行。 2、数对可以表示物体的位置,也可以确定物体的位置。 3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。 5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。 6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元 分数乘法

(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。 55

例如:×6,表示:6个相加是多少,还表

1212

5

示的6倍是多少。 12 2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

55

例如:6×,表示:6的是多少。

12122525

,表示:的 是多少。

712712 (二)、分数乘法的计算法则:

1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、分数大小的比较:

1

1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。 1分数应用题一般解题步行骤。 (1)找出含有分率的关键句。 (2)找出单位“1”的量

(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。 2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?

(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”

(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。 (8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。 (9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 单位“1”×分率=比较量 ; 比较量÷分率=单位“1” (10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。 (12)分率与量要对应。 ①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率;

⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率;

例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)

方法:单位“1”的数量×对应分率=对应数量。 2、分数的连乘。找到每一个分率的单位“1”。 (五)、倒数

1、倒数:乘积是1的两个数互为倒数。 2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。

3、0没有倒数,1的倒数是它本身。

4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

第三单元 分数除法

2

(一)、分数除法的意义:

分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:

与其中一个因数

221

? 表示:已知两个数的积是 ,

55144

,求另一个因数是多少。

22

÷4表示已知两个数的积是 ,与其中一个552

因数4,求另一个因数是多少。还表示把平均分成4

5

份,每份是多少。 (二)、分数除法的计算:

分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 (三)比和比的应用:

1.比的意义:两个数相除又叫做两个数的比。比的后项不能为0。

2. 比值的意义:比的前项除以后项所得的商,叫做比值。 3.比值的表示方式:通常用分数、小数和整数表示。 4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.

5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。

例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5

5353

(2) ﹕ =(×12)×12)=10﹕9

6464

(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)

=180﹕9=20﹕1

8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

9.按比例分配的解题方法:

(1)先求出总的份数,再求出各部分数量占总数的几分之几。

(2)用总数乘各部分的分率求出各部分的数量。

10.分数除法中,被除数与商的大小关系:

一个数(0除外)除以一个真分数,所得的商大于它本身。

一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

一个数(0除外)除以一个带分数,所得的商小于它本身。

(四)解分数应用题注意事项:

1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量 3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

4.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。

5.“已知一个数的几分之几是多少,求这个数”的解题方法:

(1)设单位“1”的量为x,列方程解答。 (2)对应数量÷对应分率=单位“1”的总数量。 6.工程问题:把工作总量看作单位“1”,

1

工作效率

工作时间

工作时间=1÷工作效率

合作时间 = 工作总量÷工作效率之和 第四单元 圆

1、圆心:圆中心一点叫做圆心。用字母“O”来表示。 半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

2.圆心确定圆的位置,半径确定圆的大小。

3

3.在同一个圆内,所有的半径都相等,所有的直径都相等。在同一个圆内,有无数条半径,有无数条直径。在同一个圆内,直径的长度是半径的2倍,半径的长

1

度是直径的一半。用字母表示为:d=2r r = d

2

4.圆的周长:围成圆的曲线的长度叫做圆的周长。 5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母?表示。圆周率是一个无限不循环小数。在计算时,取??3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 6.圆的周长公式:C=?d 或C=2?r

7、圆的面积:圆所占平面的大小叫圆的面积。 8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= ?r×r=?r2 9.圆的面积公式:S=?r2 或者S=?(d?2)2 或者S=?(C?? ?2)2

10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是?:4。 在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。

11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。

12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=?R2-?r2 或 S=?(R2-r2)。 (其中R=r+环的宽度.)

13.环形的周长=外圆周长+内圆周长 14.半圆的周长等于圆的周长的一半加直径。

半圆周长公式:C=?d?2+d 或C=?r+2r 15.半圆面积=圆面积?2 公式为:S=?r2?2 46.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径

第五单元 百分数

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

例如:25%的意义:表示一个数是另一个数的25%。

2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 3.小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,

同时在后面添上百分号;(加向右)

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左) 4.百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约

分的要约成最简分数。

5、常用的分数、小数及百分数的互化

11

2431 45

23

5541

58

3588

71810111620

11

254011 50100

6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)

8.求一个数的百分之几是多少

一个数(单位“1”) ×百分率

9. 已知一个数的百分之几是多少,求这个数 ? 部分量÷百分率=一个数(单位“1”) 10、浓度问题

发芽率?出粉率?

发芽种子数

?100%

试验种子总数面粉的重量

?100%

小麦的重量

溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)

的重量

溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度 溶液(盐水)的重量×浓度=溶质(盐)的重量

溶质(盐)的重量÷浓度=溶液(盐水)的重量

最常用的是用方程解浓度问题

比如两种不同浓度的溶液混合,最常用的数量关系是 甲溶液质量×甲的浓度+乙溶液质量×乙的浓度

(来自:WWw.SmhaiDa.com 海达范文网:六年级上学期数学重点)

=总溶液质量×总的浓度

11. 折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

“八折”的含义是:现价是原价的80%;“八五折”的

含义是:现价是原价的85%

公式:现价 = 原价 × 折数(通常写成百分数形式) = 售价 - 成本 利润

利润利润率= ×100%

成本

成数:表示一个数是另一个数十分之几的数,叫做成数,今年的粮食产量比去年增产“二成”。 “二 。 例如

成”即是十分之二,也就是今年的粮食产量比去年增

加了20%。

12.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国

合格产品数

合格率??100%

产品总数出勤率?

实际出勤人数

?100%

总人数

出油率?

油的重量

?100%

花生仁油菜子的重量

盐的重量

含盐率??100%

盐水的重量含糖率=

糖的重量

?100%

糖水的重量

及格的人数

?100%

参加考试的总人数命中的数量

?100%

打的总数量

及格率?命中率?

活了的棵数

成活率??100%

栽的总棵数正确率?出米率?

正确的题数

?100%

做题的总数大米的重量

?100%

稻谷的重量

7. 求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)

家。国家用收来的税款发展经济、科技、教育、文化

实际生活中,人们常用增加了百分之几、减少了

和国防安全。纳税的种类:将纳税主要分为增值税、

百分之几、节约了百分之几等来表示增加、或减少的

消费税、营业税、个人所得税等几类。

幅度。

13.应纳税额:缴纳的税款叫应纳税额。

求甲比乙多百分之几 (甲-乙)÷乙

14.税率:应纳税额与各种收入的比率叫做税率。

求乙比甲少百分之几 (甲-乙)÷甲

5

作文素材