作业帮 > 体裁作文 > 教育资讯

折射望远镜

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 07:20:08 体裁作文
折射望远镜体裁作文

篇一:折射式望远镜

折射式望远镜

望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。

折射式望远镜,是用透镜作物镜的望远镜。

伽利略之折射望远镜分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱

在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜 。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略

望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式。

篇二:天文望远镜原理

天文望远镜原理

天文望远镜由物镜和目镜组成,接近景物的凸形透镜或凹形反射镜叫做物镜,靠近眼睛那块叫做目镜。

远景物的光源视作平行光,根据光学原理,平行光经过透镜或球面凹形反射镜便会聚焦在一点上,这就是焦点。焦点与物镜距离就是焦距。再利用一块比物镜焦距短的凸透镜或目镜就可以把成像放大,这时观察者觉得远处景物被拉近,看得特别清楚。

O=物镜 E=目镜 f =焦点 fo=物镜焦距 fe=目镜焦距 D=物镜口径 d =斜镜

折射镜是由一组透镜组成,反射式则包括一块镀了反光金属面的凹形球面镜和把光源作 90 度反射的平面镜。两者的吸光率大致相同。

折射和反射镜各有优点,现分別讨论:

折射望远镜的优点

1. 影像稳定折射式望远镜镜筒密封,避免了空气对流现象。

2.彗像差矫正利用不同的透镜组合来矫正彗像差(Coma)。

3.保 养主镜密封,不会被污垢空气侵蚀,基本上不用保养。

博士能折射天文望远镜789971 800X70

折射望远镜的缺点 1.色 差不同波长光波成像在焦点附近,所以望远镜出现彩色光环围绕成像。矫正色差时要增加一块不同折射率的透镜,但矫正大口径镜就不容易了。

2.镜筒长。为了消除色差,设计望远镜时就要把焦距尽量增长,约主镜口径的十五倍,以六吋口径计算,便是七呎半长,而且用起来又不方便,业余制镜者要造一座这样长而稳定度高的脚架很是困难的一回事。

3.价 钱 贵光线要穿过透镜关系,所以要采用清晰度高,质地优良的玻璃,这样价钱就贵许多。全部完成后的价钱也比同一口径的反射镜贵数倍至十数倍!

反射望远镜的优点

1.消色差。 任何可见光均聚焦于一点。

2.镜 筒 短 通常镜筒长度只有主镜直径八倍,所以比折射镜筒约短两倍。短的镜筒操作力便,又容易制造稳定性高的脚架。

3.价钱便宜 光线只在主镜表面反射,制镜者可以购买较经济的普通玻璃去制造反射镜的主要部份。

星特朗Omini XLT 150 反射天文望远镜

反射望远镜的缺点

1.遮光。 对角镜放置在主镜前,把部份入射光线遮掉,而对角镜支架又产生绕射,三支架或四支架的便形成六条或四条由光星发射出来的光线。可以利用焦比八至十的设计减低遮光率。

2.影像不稳定 开放式的镜筒往往产生对流现象,很难完满地解决问题。所以在高倍看行星表面精细部份时便不容易了。

3.主镜便形温度变化和机械因素,使主镜变形,焦点也跟着改变,形成球面差,球面差就是主镜旁边线和近光轴的平行光线聚焦于不同地方,但小口径镜不成问题。

4.保 养 镀上主镜表面的驴或银,受空气污染影响,要半年再镀一次。不过一块良好的真空电镀镜面可维持数年之久。

折射望远镜由二块透镜组成,总共要磨四边光学面,反射望远镜只需要磨一边光学面,所以制造反射式望远镜花费较少时间。技术精良的话,一副自制的六吋口径反射望远镜质量随时超过市面出售的三吋折射望远镜。至于选择何种类型的望远镜则是根据天文爱好者的需要和喜爱而定。通常一枝四吋以下的折射望远镜已足夠作普通观测研究的用途。如果兴趣是观察行星或双星,便应该设计八吋口径而放大倍数高的反射望远镜,因为如此大口径的折射镜十分难制造,价钱非常昂贵,而且又非常笨重。从经济和难度考虑,初学者最适宜自制反射式望远镜。

反射望远镜的设计

反射望远镜有数种设计,现在只谈谈结构简单的牛顿式。

牛顿式望远镜最主要的结构是一块镀上反射物质的球面或拋物面玻璃。球面镜作用是把星星来的平行光反射聚焦一点,然后靠一块细小光学平面镜放置于焦点前,把光作90度角的反射至望远镜筒的边缘,再由一块凸透镜将形像放大,便获得普通望远镜应有的效果。不过球面镜中心和旁边的反射角不同,故此成像并不完全聚焦于同一点上,而形成球面差;但拋物面却可矫正这缺点,使离开光轴较远的光线也可以同时聚于焦点上,因此实际上牛顿式望远镜主镜乃拋物线面。球面镜成像抛物面成像

折反射望远镜

顾名思义是将折射系统与反射系统相结合的一种光学系统,它的物镜既包含透镜又包含反射镜,天体的光线要同时受到折射和反射。这种系统的特点是便于校正轴外像差。以球面镜为基础,加入适当的折射元件,用以校正球差,得以取得良好的光学质量。应用最广泛的有施密特望远镜(美国Meade 12”LX200SC),施密特—卡塞格林系统(南京天仪中心的KP300S),马克苏托夫与马克苏托夫—卡塞格林望远镜(南京御夫天文科教仪器厂生产的Φ160mm等系列)四种类型。由于折反射望远镜具有视场大、光力强等特点,适合于观测延伸(彗星、星系、弥散星云等)天体,并可进行巡天观测,较适合天文爱好者使用。

美国博士能折反射天文望远镜788890

篇三:天文望远镜的种类和原理

天文望远镜的种类和原理

一般天文望远镜以构造来分类,可分为折射望远镜、反射望远镜及折反射望远镜三大类....

折射望远镜

所谓折射望远镜是以会聚远方物体的光而现出实象的透镜为物镜的望远镜它会使从远方来的光折射集中在焦点,折射望远镜的好处就是使用方便,稍微忽略了保养也不会看不清楚,因为镜筒内部由物镜和目镜封着,空气不会流动,所以比较安定,此外,由于光轴的错开所引起的像恶化的情形也比反射望远镜好,而口径不大透镜皆为球面,所以可以机械研磨大量生产,故价格较便宜。

(1)伽利略型望远镜

人类第一只望远镜,使用凹透镜当目镜,透过望远镜所看到的像与实际用眼睛直接看的一样是正立像,地表观物很方便但不能扩大视野,

目前天文观测已不再使用此型设计。

(2)开普勒型望远镜

使用凸透镜当目镜,现今所有的折射式望远镜皆为此型,成像上下左右巅倒,但这样对我们天体观测是没有影响的,因为目镜是凸透镜可以把两枚以上的透镜放在一起成一组而扩大视野,并且能改善像差除却色差。 反射式望远镜

反射望远镜不用物镜而用叫主镜的凹面的反射镜。另外有一面叫做次要镜的小镜将主镜所收集的光反射出镜筒外面,由次要镜反射出来的光像再用目镜放大来看,反射式最大的长处是由于主镜是镜子,光不需通过玻璃内,所以完全不会有色差,也不太会吸收紫外光或红光,因此非常适合分光等物理观测,虽无色差但有其它各类的像差。如将反射凹面磨成拋物线形(Parabolic),则可消除球面差。因为镜筒不能密封,所以主镜很易受烟尘影响,故难于保养,同时受气温与镜筒内气流的影响较大,搬运时又很易移动了主镜与副镜的位置,而校正光轴亦相当繁复,带起来不甚方便。此外副镜座的衍射作用会使较光恒星的星像出现十字或星形的衍射纹,亦使影像反差降低,另外像的稳定度也不及折射式望远镜。

目前知名反射望远镜的设计大致分为五种..我只列举两种市售一般中小型的反射望远镜

(1)牛顿式 (Newtonian)

一六六八年由牛顿发明设计,由抛物面的主镜和平面次要镜所构成,以对着光轴45度的角度将平面次要镜装在从主镜反射过来的光的焦点的稍微前方(如上图)这种结构最为简单,影像反差较高,亦最多人选用,通常焦比在f4至f8之间。

(2)卡赛格林式或简称卡式 (Cassegrain)

利用一块双曲面凸镜(Convex hyperboloid)作为副镜,在主竞焦点前将光线聚集,穿过主镜一个圆孔而聚焦在主镜之后。因为经过一次反射,所以镜筒可以缩短,但视场较窄,像散较牛顿式严重,同时有少许场曲(Curvature of field)。

折反射望远镜 (Catadioptric telescope)

采反射和折射的长处之型式,基本上和反射一样,也有反射式望远镜的缺点,为了消除偏离光轴的视野的慧星像差使用着透镜,且主镜为球面镜,比反射型容易研磨..只介绍其中一种最为被广泛运用的折反射望远镜 施密特卡式

是1930 年由施密特(Schmidt)发明用作天文摄影。主要是利用一球面凹镜作为主镜以消除彗形像差,同时利用一非球面透镜(Aspheric Iens)放于主镜前适当位置作为矫正镜(Corrector)以矫正主镜的球面差。这样可以得出一个阔角(可达40一50度)的视场而没有一般反射镜常有的球面差与彗形像差,只有矫正镜做成的轻微色差而已。摄影用的施密特望远镜,焦比方面可以做到很小(通常在f1至f3间,最小可达〞0.6),因此很适宜于星野及星云摄影。

天文光学望远镜的基本性能参数

1、物镜的口径(D)

望远镜的物镜口径一般是指有效口径,也就是通光直径,即望远镜的入射光瞳直径,是望远镜聚光本领的主要标志,而不是指镜头的玻璃的直径大小。

2、焦距(f)

望远镜光学系统往往有二个有限焦距的系统组成,其中第一个系统(物镜)的像方焦点与第二个系统(目镜)的物方焦点相重合。物镜焦距常用f表示,而目镜焦距用f’表示。物镜焦距f是

天体摄影时底片比例尺的主要标志。对于同一天体,焦距越长,天体在焦平面上的影像尺寸就越大。

3、相对口径(A)与焦比(1/A)

望远镜有效口径D与焦距f之比,称为相对口径或相对孔径A,即A=D/f。这是望远镜光力的标志,故有时也称A为光力。彗星、星云或星系等有视面天体的成像照度与相对口径的平方(A2)成正比;流星或人造卫星等所谓线性天体成像照度与相对口径A和有效口径D之积(D2/f)成正比。因此,作天体摄影时,要注意选择合适的A或焦比1/A(即f/D。照相机上称为光圈号数或系数)。

4、分辨角(它的倒数称分辨本领)

刚刚能被望远镜分辨开的天球上两发光点之间的角距,称为分辨角,以δ表示。理论上根据光的衍射原理可得

δ=1.22λ/D

式中λ为入射光波长。在取人眼敏感波长(λ=5.55×10-4mm)时,δ用弧度表示,有

δ″=140″/D (D以mm为单位)对于照相望远镜,δ取下式:δ″=(3100A+113)/D (D以mm为单位) 此为理论的分辨角,实际上因光学镜头的加工质量及观测条件的影响,很难达到此理想的数值。而对于照相观测,对于同一天体,物镜焦距越长在焦平面上天体影像就越大,此为比例尺,以每毫米对应天体上的张角α″来表示:α″=206265/f

例如对于KP200R的主镜筒,f=2400mm,则比例尺α″=206265/2400=86″/mm

5、放大率(G)

对目视望远镜而言,物镜焦距为f,目镜焦距为f′,则放大率为

G=f/f′

由式可知,只要变换目镜,对同一物镜就可以改变望远镜的放大倍数。由于受物镜分辨本领,大气视宁静度及望远镜出瞳直径不能过小等因素的影响,一台望远镜的放大倍数不是可以任意过大的配备的。根据观测目标及大气视宁静度的实际情况,放大率一般控制在物镜口径毫米数的1~2倍。

6、视场角(ω)

能够被望远镜良好成像的天空区域,直接在观测者眼中所张的角度,称为视场或视场角(ω)。望远镜的视场往往在设计时已被确定。折射望远镜受像质的限制而约束了视场角,反射望远镜或折反射望远镜往往受副镜尺寸影响而约束了视场角。但对于天体摄影,视场还可能受接收器像素尺寸大小的约束。

望远镜的视场与放大率成反比,放大率越大,视场越小。

在未知视场的数值时,可以自行测量。以望远镜对准天赤道附近某一颗恒星,调好仪器,使星像在视场中央通过。仪器不动(不开转仪钟),记录该星经过视场的时间间隔,设为t秒,星体的赤纬为δ,则视场角为ω=15ts cosδ

7、极限星等或贯穿本领

在晴朗无月的夜间,用望远镜观察天顶附近的最暗星的星等,称为极限星等(mb),极限星等与望远镜的有效口径、相对口径、物镜的吸收系数、大气吸收系统和天空背景亮度等多种因素有关。不同作者给出的经验表达式,略有差异。较简单的估计式为mb=6.9+5lgD

式中D用cm为单位,对于照相观测,极限星等还跟露光时间及底片特性等有关。有一个常用的经验公式:

mb=4+5lgD+2.15lgt

式中t为极限露光时间,不考虑底片的互易律失效,也没有考虑城市灯光的影响。检验望远镜极限星等的方便方法,是利用昴星团中央处选标星的标准星等(见右图),或者用北极星(NPS)的标准星等(照相星等,仿视星等)来估计或推算。

篇四:天文望远镜原理

天文望远镜原理

天文望远镜由物镜和目镜组成,接近景物的凸形透镜或凹形反射镜叫做物镜,靠近眼睛那块叫做目镜。 望远镜分为三大类,折射望远镜,反射望远镜和折反射望远镜。

天文望远镜是指收集天体辐射并能确定辐射源方向的天文观测装置,通常指有聚光和成像功能的天文光学望远镜。

天文望远镜(Astronomical Telescope)是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。

为什么说问“望远镜能看多远”是错误的?

我们的肉眼就是一台光学仪器,肉眼可以看到220万光年以外的仙女座大星云,但是看不见距离地球最近的太阳系外恒星比邻星(4.2光年)。相信大家已经体会到了吧,说一个光学仪器能看多远是没有意义的,只能说看多清。

伽利略式望远镜

1609年,伽利略制作了一架口径4.2厘米,长约12厘米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,

这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

开普勒式望远镜

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们 将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。 折射和反射镜各有优点,现分別讨论:

折射望远镜的优点

1. 影像稳定折射式望远镜镜筒密封,避免了空气对流现象。

2.彗像差矫正利用不同的透镜组合来矫正彗像差(Coma)。

3.保 养主镜密封,不会被污垢空气侵蚀,基本上不用保养。

(来自:www.sMHaiDa.com 海 达范文网:折射望远镜)

博士能折射天文望远镜789971 800X70

折射望远镜的缺点 1.色 差不同波长光波成像在焦点附近,所以望远镜出现彩色光环围绕成像。矫正色差时要增加一块不同折射率的透镜,但矫正大口径镜就不容易了。

2.镜筒长。为了消除色差,设计望远镜时就要把焦距尽量增长,约主镜口径的十五倍,以六吋口径计算,便是七呎半长,而且用起来又不方便,业余制镜者要造一座这样长而稳定度高的脚架很是困难的一回事。

3.价 钱 贵光线要穿过透镜关系,所以要采用清晰度高,质地优良的玻璃,这样价钱就贵许多。全部完成后的价钱也比同一口径的反射镜贵数倍至十数倍!

反射望远镜的优点

1.消色差。 任何可见光均聚焦于一点。

2.镜 筒 短 通常镜筒长度只有主镜直径八倍,所以比折射镜筒约短两倍。短的镜筒操作力便,又容易制造稳定性高的脚架。

3.价钱便宜 光线只在主镜表面反射,制镜者可以购买较经济的普通玻璃去制造反射镜的主要部份。

反射望远镜的缺点

1.遮光。 对角镜放置在主镜前,把部份入射光线遮掉,而对角镜支架又产生绕射,三支架或四支架的便形成六条或四条由光星发射出来的光线。可以利用焦比八至十的设计减低遮光率。

2.影像不稳定 开放式的镜筒往往产生对流现象,很难完满地解决问题。所以在高倍看行星表面精细部份时便不容易了。

3.主镜便形温度变化和机械因素,使主镜变形,焦点也跟着改变,形成球面差,球面差就是主镜旁边线和近光轴的平行光线聚焦于不同地方,但小口径镜不成问题。

4.保 养 镀上主镜表面的驴或银,受空气污染影响,要半年再镀一次。不过一块良好的真空电镀镜面可维持数年之久。

折射望远镜由二块透镜组成,总共要磨四边光学面,反射望远镜只需要磨一边光学面,所以制造反射式望远镜花费较少时间。技术精良的话,一副自制的六吋口径反射望远镜质量随时超过市面出售的三吋折射望远镜。至于选择何种类型的望远镜则是根据天文爱好者的需要和喜爱而定。通常一枝四吋以下的折射望远镜已足夠作普通观测研究的用途。如果兴趣是观察行星或双星,便应该设计八吋口径而放大倍数高的反射望远镜,因为如此大口径的折射镜十分难制造,价钱非常昂贵,而且又非常笨重。从经济和难度考虑,初学者最适宜自制反射式望远镜。

望远镜口径越大,集光力愈强,可以看见星星的数目亦增加,集光力是收音机收集光线比眼睛强多少倍的意思。集光本领乃望远镜物镜直径平方和瞳孔直径平方之比。人的瞳孔,日间受光影响,故收缩,晚上则尽量扩大,直径伸缩由四毫米至八毫米,平均值是七毫米。望远镜比肉眼大上许多倍,以一枝150 毫米即六吋口径反射镜来记算,就比肉眼看东西明亮 495 倍。当然望远镜口径大还可以观察到更加

暗的星星,口径和星等的关系如右。

使用方法:

先用寻星镜,就是上面的小望远镜,将想要观测的行星放在寻星镜的中间,然后用低倍的目镜寻找星体,对焦,直到看清为止,然后换高倍的目镜可以清楚观测行星细部,观测月亮前一定要使用最低倍的配置寻找,看到的月亮应该是很清楚但是很小,这时再换目镜就比较容易寻找焦距了。然后再换上1.5倍放大镜筒观测,理想的观测时间应该正好可以把月亮细部看得清清楚楚,要注意当天的天气状况。观测其他的行星要用星图观测,带一定要找到相应的纬度的星图,然后调整坐标就可以用相同的方法寻找,但要注意口径太小是无法看到更远的行星的,要星图的话我可以帮你找,到开阔的地方观察很重要。

在天文望远镜的观测之下,月亮的表面看的很清楚。

你加增倍镜没有?

1:装好天文望远镜后不要加增倍镜

2:找月亮时加20mm的目镜

3:找准月亮对好焦距看看是否满意清晰度放大程度

4:确定好后在跟换目镜9mm或6mm再次对焦

就不会盲目了(以上我所说的目镜不一定是你望远镜标配的目镜,但方法都是一样的)

天文望远镜放大倍数的计算方法:目镜/焦距=望远镜放大倍数

看月亮要用月亮镜才能看清楚的,不然由于光线太强只能看到白色模糊的像。

关于月球的观测 月球有环形山、链状山脉、月海、月谷、沟纹(干涸的河流)和亮辐射条纹,好的天文望远镜可看到月球上非常细微的细节。观测月球最好的放大倍率是(1~1.5)×主镜口径(mm)。

关于天文望远镜的支架 天文望远镜的支架有地平式和赤道式2种,都有2个互相垂直的转轴。天文望远镜的视野一般都比较小,而且放大倍率越大,视野就越小,所以,要选择一个不会因风吹而抖动的支架。

篇五:内行推荐最著名的14款望远镜

1、伽利略折射望远镜

图中的情景发生于1609年8月,伽利略正在向当时的威尼斯统治者演示他的望远镜。伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。

2、牛顿反射式望远镜

牛顿反射式望远镜的原理并不是采用玻璃透镜使光线折射或弯曲,而是使用一个弯曲的镜面将光线反射到一个焦点之上。这种方法比使用透镜将物体放大的倍数要高数倍。

3、赫歇尔望远镜

图中显示的是赫歇尔所制造的最大望远镜,镜面口径为1.2米。该望远镜非常笨重,需要四个人来操作。赫歇尔是制作反射式望远镜的大师,在反射式望远镜发明后,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。

4、耶基斯折射望远镜

耶基斯折射望远镜坐落于美国威斯康星州的耶基斯天文台,主透镜建成于1895年,是当时世界上最大望远镜。十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。

5、威尔逊山60英寸望远镜

这幅图片拍摄于1946年,夜间操作员吉因-汉考克正在手动操控望远镜。1908年,美国天文学家乔治-埃勒里-海耳主持建成了口径60英寸的反射望远镜,安装于威尔逊山。这是当时世界上最大的望远镜,光谱分析、视差测量、星云观测和测光等天文学领域成为世界领先的设备。更多精美实用的极致物件请关注微信公众号 最东西

6、胡克100英寸望远镜

体裁作文