如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD相切于点Q,求AB 的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:53:33

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD相切于点Q,求AB 的长
如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD相切于点Q,求AB 的长

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD相切于点Q,求AB 的长
此题要把图画对就行了
两个圆是内切的,小圆在大圆内,这样就很简单了
设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E,
设AB=2a(正方形的边长),在直角三角形MAE中,
AM^2=ME^2+AE^2,即5^2=(2a-2)^2+a^2
解得,a=3或-1.4(舍去)
所以AB=6

还没有图呢

设大圆的圆心为M点,连接MA,MP,连接PM并延长与AB交于点E,交小圆于Q点,
由对称性可知P、Q为切点,E为AB的中点;
设AB=2a(正方形的边长),在直角三角形MAE中,
∵小圆在正方形的外部且与CD切于点Q.
∴PQ⊥CD,
∵CD∥AB,
∴PE⊥AB,
∴AE=BE,
∴AM2=ME2+AE2,
即52=(2a-...

全部展开

设大圆的圆心为M点,连接MA,MP,连接PM并延长与AB交于点E,交小圆于Q点,
由对称性可知P、Q为切点,E为AB的中点;
设AB=2a(正方形的边长),在直角三角形MAE中,
∵小圆在正方形的外部且与CD切于点Q.
∴PQ⊥CD,
∵CD∥AB,
∴PE⊥AB,
∴AE=BE,
∴AM2=ME2+AE2,
即52=(2a-2)2+a2
解得,a=3或-1.4(舍去)
所以AB=6.

收起

图呢,还要想图?


延长PQ交AB于E,连接OA
设正方形边长AB=X
则OE=(5-3)/2+X=X+1
在△OAE中,(X+1)²+(X/2)²=5²
没时间了,自己解吧

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形 如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上……如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在 设PQ是过抛物线y2=2px(p>0)的焦点F的弦,求证:以PQ为直径的圆与抛物线的准线相切. 过抛物线y^2=2px的焦点作弦PQ,以PQ为直径作圆与抛物线的准线的位置关系是? 过抛物线y^2=2px的焦点作弦PQ,以PQ为直径作圆与抛物线的准线的位置关系是 如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于是P,正方形ABCD的顶点A、B在圆上,小圆在正方形的外部且与CD切于的Q,求正方形ABCD的边长. 已知 PQ=3 以PQ为直径的圆与一个以5为半径的圆相切与点P 正方形ABCD的顶点AB在大圆上 小圆在正方形上的外部且与CD切于点Q 求AB已知 PQ=3 以PQ为直径的圆与一个以5为半径的圆相切与点P 正方形AB 如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD相切于点Q,求AB 的长 PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外...PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正 已知圆x²+y²+x-6m和直线x+2y-3=0交与PQ两点,且以PQ为直径的圆恰过坐标原点,求m 抛物线及其标准方程求过抛物线的焦点F的弦PQ,以PQ为直径的圆与抛物线的准线的位置关系. 1 如果从半径为9的圆形纸片剪去3分之1圆周的一个扇形,将留下的扇形围成一个圆锥,那么这个圆锥的高为2 如图 PQ=3,以PQ为直径的圆与一个以5为半径的圆相切与点P,正方形ABCD的顶点A,B在大圆上, 已知抛物线y=ax2+bx+c与x轴交于P,Q两点,求以PQ为直径的圆的方程. 如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=? 如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB= . 如图所示,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点,求PQ与⊙O的位置关系...... 如图所示AB为圆O的直径,PQ切圆O于T,AC垂直PQ于C,交圆O于D 已知两点P(4,9)Q(6,3),以PQ为直径的圆的方程是多少?