求linx→2=(2x3-3x+7)的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:39:58

求linx→2=(2x3-3x+7)的极限
求linx→2=(2x3-3x+7)的极限

求linx→2=(2x3-3x+7)的极限
答:
直接代入即可
lim(x→2) (2x^3-3x+7)=16-6+7=17

这是初等函数,它的极限就是函数在这点的值
2*2³-2*3+7=17