如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:36:15
如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值=
如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值=
如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值=
题目应该是[-b,-a]吧
答案是:2
如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值=
若函数f(X) 在区间 (a,b] 上是增函数,在区间 [b,c) 上也是增函数,则f(x) 在区间(a,c) 上是什么函数
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至
若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图
复合函数单调性题目f(x)=8+2x-x^2,如果g(x)=f(2-x^2 ),那么g(x)A、在区间(-1,0)上是减函数B、在区间(0,1)上是减函数C、在区间(-2,0)上是增函数D、在区间(0,2)上是增函数B、C好像
函数单调性奇偶性已知f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么g(x) A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数
已知f(x)是偶函数,它在区间[a,b]上是减函数(0<a<b),证明f(x)在区间[-b,-a]上是增函数
二次函数区间最值题1.若函数f(x)在区间(a ,b)内函数的导数为正,且f(b)≤0,则函数f(x)在(a,b)内有( )A f(x) >0 B f(x)< 0 C f(x) = 0 D 无法确定2.7、如果奇函数f(x)在区间[ 3,7 ]上是增函数且最小
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,则f(x) A,在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C,在区间[-2,-1]上是
已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)z在区间(-b,-a)上仍是减函数
已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数
如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
证明函数f(x)=ax+b/x(a>0,b>0)在区间[根号b/a,+∞)上是增函数
如果函数F(x)在区间[a,b]上是增函数,且最小值2,f(x)是偶函数,则f(x)在区间[-b,-a]上是( )谢谢 A 增函数且最小值为-2 B 增函数且最小值为2 c 减函数且最小值为2 D 减函数且最小值为-2
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
已知函数f(x)在区间【a,b】上单调且f(a)f(b)
已知奇函数f(x)在区间[-b,-a] (b>a>0)上是减函数,且f(x)>0,试问函数y=|f(x)|在区间[a,b]上是增函数还是减函数?证明你的结论
高等数学中,如果f(x)在(a,b)的开区间内可导,那么导函数在开区间(a,b)内连续吗?需要证明.