已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为:(1-ln2)√2应是√2/6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:25:14
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为:(1-ln2)√2应是√2/6
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,
则此棱锥的体积为:(1-ln2)√2
应是√2/6
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为:(1-ln2)√2应是√2/6
证明:取AB的中点D,连接SD,过点S作SE⊥DC.
则AB⊥SD,AB⊥DC,∴AB⊥平面SDC,∴平面SDC⊥平面ABC,∴SE⊥平面ABC
SB=√(SC²-BC²)=√3,∴∠SCB=60°,∠DCB=30°
∴由cos∠SCB=cos∠SCE*cos∠DCB得cos∠SCE=√3/3
∴CE=2√6/3
∴V=(1/3)*√3/4 * 2√6/3 =√2/6
综上,你的答案是正确的,书上答案错误.
孩子,那是下一道题的答案……
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为( )
已知三棱锥S-ABC的所有顶点都在球O的球面上,三角形ABC是边长为1的正三角形,SC为球O的直径,体积为?(具体方法)
已知三棱锥S-ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球的直径,且SC=2,则此棱锥的体积为?
三棱锥s-abc的所有顶点都在球O的球面上,三角形abc为边长为一的正三角形,sc为球o 的直径sc=2,求三棱锥V
三棱锥s-abc的所有顶点都在球O的球面上,三角形abc为边长为一的正三角形,sc为球o 的直径sc=2,求三棱锥V
已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,三角形ABC是以边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为√2/6,则球O的表面积是多少?‘我看过您的回答 可是还是不太懂
已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,三角形ABC是以边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为√2/6,则球O的表面积是多少?
已知三棱锥S-ABC的所有顶点都在球O的球面上,SC为球O的直径,且SC⊥OA,SC⊥OB,△OAB是等边三角形,三棱锥S-ABC的体积是4√3/3,则球O的表面积是多少?
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( ):∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径r=根 3/ 3 ,∵点O到
三棱锥S-ABC的所有顶点都在球O上,SA垂直于平面ABC,AB垂直于BC ,又SA=AB=BC=1,则球O的表面积为多少
若三棱锥s—ABC的所有顶点都在球O的球面上,SA垂直于ABC,SA=2根号3,AB=1,AC=2,角BAC为60度,则球0的表面积
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,求锥体积我对这个证明有点疑惑,为什么SD垂直于AB呢?还有角SDC是90度吗?因为SC是直径,所以只要点X在
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为:(1-ln2)√2应是√2/6
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,SC=2求锥体积.除了做AB中点D的那种方法,有没有其他方法?
已知三棱锥SABC的所有顶点都在球o的球面上,ABC是边长为1的正三角形SC为球O的直径且SC=2,求锥体积为什么三棱锥的高不是1+O到平面ABC的距离d=√(1-r²)=√6/3而是2√6/3
三棱锥外接球的表面积三棱锥s-ABC 的所有顶点都在球O的球面上,SA⊥平面ABC,SA=根号2 AB=1 AC=2 角BAC=60° 则球的表面积为
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,求锥体积我的做法是:角SBC=SAC=90度,那SB=SA=根号3,因为AD=1/2,可以求出SD=根号11/2,又因为CD=根号3/2,可
已知s-ABC的所有顶点都在球o的球面上三角形ABC是边长为1的正三角形sc为球o的直径且sc=2求此棱锥的体积?