初三相似三角形判定题如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF‖AB,延长BP交AC于E,交CF于F.求证BP²=PE·PF.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:51:48
初三相似三角形判定题如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF‖AB,延长BP交AC于E,交CF于F.求证BP²=PE·PF.
初三相似三角形判定题
如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF‖AB,延长BP交AC于E,交CF于F.求证BP²=PE·PF.
初三相似三角形判定题如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF‖AB,延长BP交AC于E,交CF于F.求证BP²=PE·PF.
连结pc
角ABP=角PFC=角PCE
所以△EPC相似于△CPF
PC/PF=EP/CP
所以PC*PC=BP*BP=PE*PF
得证
做不出来啊
初三相似三角形的判定题如图,在等边△ABC中,P为BC上一点,且∠APD=60°,BP=1,CD=三分之二,则△ABC的边长为?
初三相似三角形的判定!
在△ABC中,AD⊥BC于D,DE⊥AB于E,DF垂直AC于F,求证:AE比AF=AC比AB.用初三学的相似三角形的判定解题.
初三相似三角形判定题如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF‖AB,延长BP交AC于E,交CF于F.求证BP²=PE·PF.
初三相似三角形的判定题如图,△ABC中,∠ABC=60°,点P是△ABC内一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=_____.
相似三角形的判定几道题目已知:三角形ABC中,AB=AC,在三角形AB1C1中,A1B1=A1C1.(1)问:如果角A=角A1,求证:三角形ABC相似三角形A1B1C1:(2)问:如果角B=角B1,求证三角形ABC相似三角形A1B1C1要用判定,标
初三相似三角形题如图,在△ABC中,AB=AC,∠BAC=90°,BD是中线,AE⊥BD,交BC于点E,求证BE=2EC额,,我们还没学正弦定理,,初三还米上呢..
在Rt△ABC中,∠C=90°,CD⊥AB于点D,求证:△ABC∽△CBD;△ABC∽△ACD是有关于相似三角形的判定的,.
初三数学相似,三角形一边的平行线如图,在△ABC中,DE‖BC,AB=4,AC=8,DE=AE,则AE=
初三数学三角形相似在△ABC中,D是AB上一定点,E为AC上一点,使得△ADE和△ABC相似,这样的点E最多有多少个?急求~谢谢为什么?
相似三角形判定定理
判定三角形相似定理?
相似三角形判定
相似三角形怎样判定?
相似三角形的判定
怎样判定相似三角形?
相似三角形判定练习
初三相似三角形的判定证明题(1)如图1,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE‖BC.(2)如图2,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC改成相