已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)1 求﹛an﹜的通项公式an2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和求证tn≥1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:50:48

已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)1 求﹛an﹜的通项公式an2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和求证tn≥1/2
已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)
1 求﹛an﹜的通项公式an
2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和
求证tn≥1/2

已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)1 求﹛an﹜的通项公式an2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和求证tn≥1/2
a(1)=s(1)=2a(1)-2,a(1)=2.
a(n+1)=s(n+1)-s(n)=2a(n+1)-2-2a(n),
a(n+1)=2a(n)+2
a(n+1)+2=2[a(n)+2]
{a(n)+2}是首项为a(1)+2=4,公比为2的等比数列.
a(n)+2=4*2^(n-1)=2^(n+1),
a(n)=2^(n+1)-2,
b(n)=log_{2}[a(n)+2]=log_{2}[2^(n+1)]=n+1,
c(n)=b(n)/[a(n)+2]=(n+1)/2^(n+1),
t(n)=2/2^2 + 3/2^3 + 4/2^4 + ...+ n/2^n + (n+1)/2^(n+1),
2t(n)= 2/2 + 3/2^2 + 4/2^3 + ...+ n/2^(n-1) + (n+1)/2^n,
t(n)=2t(n)-t(n)=2/2 + 1/2^2 + 1/2^3 + ...+ 1/2^n - (n+1)/2^(n+1)
=1/2+1/2 + 1/2^2 + ...+1/2^n -(n+1)/2^(n+1)
=1/2+(1/2)[1-1/2^n]/(1-1/2) - (n+1)/2^(n+1)
=1/2+1-1/2^n - (n+1)/2^(n+1)
=3/2 - (n+3)/2^(n+1),
t(n)-1/2=1 - (n+3)/2^(n+1) = [2^(n+1) - n - 3] /2^(n+1),
2^(n+1)=(1+1)^(n+1)=1^(n+1)+(n+1)1^n + ...+ (n+1)*1 + 1 >=1+(n+1) + 1 = n+3
2^(n+1)>=n+3.
t(n)-1/2 = [2^(n+1)-n-3]/2^(n+1)>=0,
t(n)>=1/2

an=n+1

已知数列{an}的前n项和为sn,且满足sn=n 已知数列{an},Sn为前n项的和,满足关系式2Sn=3an-3,求﹛an﹜的通项公式 已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an 已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an (1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列 已知数列an前n项的和为Sn 且满足Sn=1-nan n=自然数 已知数列{an}的前n项和Sn满足log2(Sn +1)=n 则其通向公式为 已知数列{an}的前n项和为Sn,且满足an+2Sn×S(n-1)=0,a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求数列{an}的通项公式. 已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式anRT , 已知数列{An}中,A1=-1,前n项和为Sn(Sn不等于0),满足Sn乘以S(n-1)=An(n大于等于2),求数列的通项公式. 已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)1 求﹛an﹜的通项公式an2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和求证tn≥1/2 已知数列{an}的前n项和Sn满足lg(1+Sn)=n 则数列{an}的通项公式为an=____ 已知数列{an}的前n项和为Sn,满足Sn=2an-2n,1.求数列an的通向公式2. 已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn 已知两个数列﹛an﹜,﹛bn﹜,满足bn=3^n*an,且数列﹛bn﹜的前n项和为Sn=3n-2,则数列﹛an﹜的通项公式为已知两个数列﹛an﹜,﹛bn﹜,满足bn=3^n×an,且数列﹛bn﹜的前n项和为Sn=3n-2,则数列﹛an﹜的通项 已知数列{an}的前n项和为Sn,通项an满足Sn+an=1/2(n²+3n-2)求通项公式an 已知数列{an}的前n项和为Sn,满足an+Sn=2n. (Ⅰ)证明:数列{an-2}为等比数列,并求出an;已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n) 已知数列an的前n项和sn满足log2(an+1)=n+1,则通项公式为