设n阶矩阵A的特征值为λ1,λ2,···,λn.λ^n+a1*λ^(n-1)+···+an为A的特征多项式.试证:a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:59:40

设n阶矩阵A的特征值为λ1,λ2,···,λn.λ^n+a1*λ^(n-1)+···+an为A的特征多项式.试证:a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn.
设n阶矩阵A的特征值为λ1,λ2,···,λn.λ^n+a1*λ^(n-1)+···+an为A的特征多项式.试证:a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn.

设n阶矩阵A的特征值为λ1,λ2,···,λn.λ^n+a1*λ^(n-1)+···+an为A的特征多项式.试证:a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn.
λ^n+a1*λ^(n-1)+···+an为A的特征多项式,而λ1,λ2,···,λn为A的特征值,则λ1,λ2,···,λn为特征多项式λ^n+a1*λ^(n-1)+···+an的n个根,即
λ^n+a1*λ^(n-1)+···+an=(λ-λ1)(λ-λ2)...(λ-λn)
把右边展开,比较λ^(n-1)和常数项的值,即得:
a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn.

设α为n阶对称矩阵A的对应于特征值λ的特征向量,求矩阵((P^-1)AP)^T对应于特征值λ的特征向量 已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为? 设为n阶方阵,为的伴随矩阵,若有特征值为λ,则A-1的特征值之一为 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是A.λ^-1 |A|^nB.λ |A|C.λ^-1 |A|D.λ|A|^n 设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位阵.若A有特征值λ,则(A*)^2+E必有特征值 设n阶矩阵A的特征值为λ1,λ2,···,λn.λ^n+a1*λ^(n-1)+···+an为A的特征多项式.试证:a1=-(λ1+λ2+···+λn),an=(-1)^n*λ1λ2···λn. 求一题关于特征值的数学证明题设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值. 设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量 已知A为n阶可逆矩阵,试证λ^-1为A^-1的特征值 设λ是n阶矩阵A的特征值 则 是A平方的特征值设λ是n阶矩阵A的特征值 则 是A平方的特征值 设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP 设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值.线性代数的证明体, 设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值. 设λ为n阶方阵A的一个特征值,则A^2+2A+E的一个特征值为 设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1 设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值 设n阶矩阵A的元素全为1,则A的n个特征值是?