设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:30:29

设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP
设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量
A、P^-1AP B、A^2+3A C、A^2 D、P^TAP

设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP
Aα=λα,两边左乘A,得A^2α=Aλα=λAα=λλα=λ^2α,
所以λ^2是A^2的特征根,α是对应的特征向量.
答案选C

设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量 设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α 设ξ是矩阵A的属于特征值λ的一个特征向量,求证:ξ是A^n的属于特征值λ^n的一个特征向量 设α为n阶对称矩阵A的对应于特征值λ的特征向量,求矩阵((P^-1)AP)^T对应于特征值λ的特征向量 设A是n阶矩阵,n维非零列向量α 是A的属于特征值λ 的特征向量,P是n阶可逆矩阵 ,则矩阵P^-1AP属于特征值λ 的特征向量是?希望能有步骤和分析, 特征值特征向量设α1,α2是3阶矩阵A的属于特征值λ1的两个线性无关的特征向量,为是么α1+α2是2A-E的特征向量? 《线性代数》中关于矩阵的一题目:设A是n阶矩阵,P是n阶可逆矩阵,已知n维列向量a是矩阵P-1(P的负1次方)AP的属于特征值λ的特征向量,则矩阵A属于特征值λ的特征向量是______? 设α1,α2是矩阵A属于不同特征值的特征向量,证明α1+α2不是矩阵A的特征向量 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta 已知A,B都是n阶矩阵,PA^-1P=B,若α是矩阵A属于特征值λ的特征向量,则矩阵B必有特征向量().答案是P^-1α,我有最后一步不能理解.就是推到 λ(P^-1α) = B(P^-1α)时它就说特征向量是P^-1α了,为什么这 设β1是n阶矩阵A属于特征值λ1的特征向量,β2,β3是A属于特征值λ2的特征向量,λ1≠λ2,证明:β1,β2,β3线性无关. 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP) 已知A的特征值、特征向量求(A逆)的特征值和特征向量1、已知A的特征值为λ,特征向量为 α.故 α是(A逆)属于1/λ的特征向量.2、已知A的特征值为λ,特征向量为 α.故α是(A的伴随矩阵)属 设A为可逆矩阵,λ为A的一个特征值,对应的特征向量为ζ,求:(1)A*的一个特征值及对应的特征向量(2)P^(-1)AP的一个特征值及对应的特征向量 设detA不等于0,λ是A的特征值,x是相应的特征向量,求伴随矩阵A的特征值和特征向量 设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量 设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关