已知数列{An}的前n项和公式Sn=32n-n^2,求新数列{/An/}的n项和Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:25:12

已知数列{An}的前n项和公式Sn=32n-n^2,求新数列{/An/}的n项和Tn
已知数列{An}的前n项和公式Sn=32n-n^2,求新数列{/An/}的n项和Tn

已知数列{An}的前n项和公式Sn=32n-n^2,求新数列{/An/}的n项和Tn
an=sn-sn-1
=32n-n^2-32n+32+n^2-2n+1
=-2n+33
-2n+33>0 n<33/2≈16
即|an|前十六项和为
31+29+27+25+……+1=256
当n>16时,Tn =(1+2n-33)*(n-16)/2=n^2-32n+264
当n<=16时,Tn =(31+33-2n)*n/2=-n^2+32n

An=Sn-S(n-1)
=32n-n^2-32n+32+n^2-2n+1
=-2n+33
-2n+33>0 n<33/2,n≤16 。
所以
n≤16时,
|An|=|-2n+33 |=-2n+33
Tn =|32n-n^2|=-n^2+32n
当n>16时,
|An|=|-2n+33 |=2n-33
Tn ...

全部展开

An=Sn-S(n-1)
=32n-n^2-32n+32+n^2-2n+1
=-2n+33
-2n+33>0 n<33/2,n≤16 。
所以
n≤16时,
|An|=|-2n+33 |=-2n+33
Tn =|32n-n^2|=-n^2+32n
当n>16时,
|An|=|-2n+33 |=2n-33
Tn =|Sn-S16|+|S16|
=|32n-n^2-32*16+16^2|+32*16-16^2
=|32n-n^2-16^2|+16^2
=|-(n-16)^2|+16^2
=(n-16)^2+16^2
=n^2-32n+512
当n≤16时,Tn =-n^2+32n
当n>16时,Tn =n^2-32n+512 。

收起