1设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.求a,b的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:26:26

1设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.求a,b的值
1设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.
求a,b的值

1设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.求a,b的值
f(x)=ax^2+bx+k f'(x)=2ax+b, f(x)在x=o处取得极值, 所以f'(0)=0, b=0 f(x)在x=1处的切线斜率为f‘(1)=2a=2(直线x+2y+1=0斜率的负倒数) a=1 综上有a=1,b=0
记得采纳啊

设函数f(x)=ax^2+bx+k(k大于0)满足f(2x)-f(x+1)=3x^2-2x-1 求a,b的值 设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0. 设函数f(x)=ax^2+bx+1,(1)若f(-1)=0,对任意实数f(x)>0恒成立,求f(x)设函数f(x)=ax^2+bx+1,(1)若f(-1)=0,对任意实数f(x)>0恒成立,求f(x)(2)在(1)的条件下,x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的范围(3)在(1) 设函数f(x)=1/3ax^3+1/2bx^2+cx(a,b,c∈R,a≠0)的图像在[x,f(x)]处的切线的斜率为K(X)设函数f(x)=1/3ax^3+1/2bx^2+cx (a,b,c∈R,a≠0)的图像在x,f(x)处的切线的斜率为k(X),且函数g(X)=k(X)-X/2为偶函数若函数k(X)满 设函数f(x)=e^x-ax-2 若a=1 k为整数且当x大于0时 (x-k 设函数f(X)=lnx-1/2ax^2-bx F(x)=f(x)+1/2ax^2+bx+a/x (0<x≤3) 以其图像上任意一点P(x0,y0)为切点的的斜率k≤1/2恒成立,求实数a的取值范围 设函数f(x)=e^x-ax-2若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值 已知二次函数f(x)=ax^2+bx+1的图像过点(1,4),且对于任意实数x,不等式f(x)>=4x.(一)求函数解析式.(二)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围. 设函数f(x)=ax^2+bx+c (a 设函数f(x)=ax²+bx+c(a 已知函数f(x)=-x^3+ax^2+b,设函数y=f(x)(x属于(0,1))的图像上任意一点的切线斜率为k设求|k| 高一3道函数题目,在线等答案!1,若函数f(x)=(k-2)x的平方+(k-1)x+3是偶函数,那f(x)的递减区间是( )2,设f(x)=ax的七次方+bx+5,已知f(-7)=-17,求f(7)的值.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x) 1设函数f(X)=ax+bx+k(k>)在x=o处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.求a,b的值 设函数f(x)=ax^2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数f(x)≥0恒成立:(1)求f(x)的表达式(2)在(1)的条件下,当x∈【-2.2】时,g(x)=f(x)-kx是增函数,求实数k的取值范围 【高一数学】设函数f(x)=ax^2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数f(x)≥0恒成立:(1)求f(x)的表达式(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围 设二次函数f(x)=ax^2+bx+c的图像与x轴交于点(-1,0),且满足[f(x)-x]*[f(x)-(x^2+1)/2]≤0恒成立 (1)求f(1)的值(2)求f(x)的解析式(3)求证∑(1/f(k))>2n/(n+2). 设函数f(x)=ax^2+bx+1(a≠0,b∈R),(1)若f(-1)=0,且对任意实数x(x∈R)不等式f(x) ≥0恒成立,在(1)的条件下,当x∈【-2,2】时,g(x)=f(x)-kx是增函数,求实数k的取值范围 f(x)=ax的平方+bx+c,(a>0),的值域为?函数y=x分之k (k≠0) 的值域