证明:sin^(x+y)≤(x+y)^2 D为任意有界闭区域sin^2(x+y)≤(x+y)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:43:16
证明:sin^(x+y)≤(x+y)^2 D为任意有界闭区域sin^2(x+y)≤(x+y)^2
证明:sin^(x+y)≤(x+y)^2 D为任意有界闭区域
sin^2(x+y)≤(x+y)^2
证明:sin^(x+y)≤(x+y)^2 D为任意有界闭区域sin^2(x+y)≤(x+y)^2
你应该知道:|sinx|<=|x| 对任意实数x成立吧?
所以对任意的x+y,有你的式子成立
sin^(x+y)表示什么?
一道三角恒等式证明题请证明sin(x+y)sin(x-y)=sin^2(x)-sin^2(y)
证明sin(x+y)sin(x-y)=sinx-siny
证明:sin^(x+y)≤(x+y)^2 D为任意有界闭区域sin^2(x+y)≤(x+y)^2
证明tan(x+y)+tan(x-y)=sin2x/cos^2x-sin^2y
证明COS(X+Y)COS(X-Y)=COS^2X-SIN^2Y
证明cos(x+y)cos(x-y)= cos^2(x)-sin^2(y)
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+y)/2)
证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.
如果 2sin(x-y)=sin(x+y),证明 tanx= 3 tany
三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z)
请问怎么证明sinX+sin(X+Y)+sin(X+2Y)/cosX+cos(X+Y)+cos(X+2Y)=tan(X+Y),
证明cosx-cos(x+2y)/2siny= sin(x+y)证明cosX-cos(x+2y)/2siny= sin(x+y)
请问,如何证明sinx+siny=2*sin(x+y/2)*cos(x-y/2)
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
证明sin2x+sin2y=2sin(x+y)cos(x-y)怎么做
证明cos²x-cos²y=sin²(x-y)-2sinxcosysin(x-y).万分感激!
证明不等式|X|-|Y|≤|X-Y|
已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z