证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:53:11
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
[sin(2x+y)/sinx]-2cos(x+y)
={[sin(x+y)cosx+cos(x+y)sinx]/sinx}-2cos(x+y)
={[sin(x+y)cosx+cos(x+y)sinx-2cos(x+y)sinx]/sinx
=[sin(x+y)cosx-cos(x+y)sinx]/sinx
=sin(x+y-x)/sinx
=siny/sinx
把5siny=sin(2x+y)变为5sin[(x+y)-x]=sin[(x+y)+x],把其中的(x+y),看成一个整体,上式即变为4sin(x+y)cosx=6cos(x+y)sinx,再把式子的左右两边变换为sin(x+y)/cos(x+y)=3/2sinx/cosx,即tan(x+y)=3/2 tanx
证明sin(x+y)sin(x-y)=sinx-siny
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.
证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin(x-y)/2
y=[√(1+sin^2x)+sinx+1]/[√(1+sin^2x)+sinx-1]判断并证明奇偶性
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+y)/2)
三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z)
请问,如何证明sinx+siny=2*sin(x+y/2)*cos(x-y/2)
证明y=sinx+sinπx不是周期函数
请问怎么证明sinX+sin(X+Y)+sin(X+2Y)/cosX+cos(X+Y)+cos(X+2Y)=tan(X+Y),
判断函数y=lg[sinx++√(1+sin^2x)]的奇偶性并证明
证明sinx+cos(x+y)siny/cosx-sin(x+y)siny=tan(x+y)
y=sinx/sin^2x-sinx+2求最值
证明:sin2x=2sinx*cosx为什么sin(x+x)=sinx*cosx+cosx*sinx?
sinx连续性的证明.Δy=sin(x+Δx)-sin(x)=2sin(Δx/2)*cos(x+Δx/2)sinx连续性的证明.Δy=sin(x+Δx)-sin(x)=2sin(Δx/2)*cos(x+Δx/2)然后知道cos(x+Δx/2)
sin(x+y)-sinx=2cos(x+1/2y)sin(1/2y)的详细证明步骤.越详细越好.
y=sinx+sin|x|
证明x∈(0,π/2),cos(cosx)>sin(sinx)