高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:30:20
高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况
高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况
高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况
不是的.lim(x→x0)f(x) 不存在的严格定义是:“f(x0-0) 与 f(x0+0) 至少有一个不存在或者二者都存在但不相等”,与函数在x0点是否无定义无关.
当然不止
例如:
f(x)=0,x>0
=1,x≤0
那么,lim(x→0) f(x)也不存在
但是f(x)在x=0处有定义
而且,就算f(x)在x=x0处无定义,极限也是可以存在的
例如:
f(x)=sinx / x
重要的极限:
lim(x→0) sinx / x =1
但f(x)在x...
全部展开
当然不止
例如:
f(x)=0,x>0
=1,x≤0
那么,lim(x→0) f(x)也不存在
但是f(x)在x=0处有定义
而且,就算f(x)在x=x0处无定义,极限也是可以存在的
例如:
f(x)=sinx / x
重要的极限:
lim(x→0) sinx / x =1
但f(x)在x=0处并无定义
有不懂欢迎追问
收起
高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况
高数函数的极限中的定理1怎么证明函数f(x)当X→x0时极限存在的充要条件是左极限和右极限各自存在并且相等即f(x0-0)=f(x0+0)
高数问题:证明极限lim|x-1|/(x-1)不存在 (x→1)
高数证明极限不存在
高数极限为什么不存在?
高数极限里x→x0+0和x→x0-0怎么理解啊,
高数极限问题中的无穷小高数极限中无穷小的定义是F(X)在X趋近于x0或无穷时极限为零,则称f(x)是x在这一过程的无穷小,但在之后的相关证明中,似乎又出现了定义特定符号为x趋近于x0时的无穷
高数多元函数的极限不存在问题?
当X--X0时f(X)的极限为A,G(X)的极限不存在,若A≠0,则当X--X0时,[F(X)·G(X)]极限不存在,这是为什么请尽量具体点
江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取.
高数自变量趋于有限值时函数的极限的有关问题充分接近于X0的自变量X 用数学语言表达是“0
高数极限问题
高数极限问题,
【高数极限问题】,
高数极限问题
高数极限问题,f(x)是分段函数
极限是无穷大时是不是极限不存在
极限是无穷时是否极限不存在