江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:41:26

江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取.
江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取.

江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取.
正确,若f(x)在x0处连续,则f(x)在x=x0处的极限必存在.

错误。

现在以f(x)在x=x0处连续的条件运用于(**)式。连续于x0的充要条件是: 双边极限存在的例子不太好举,再思考一下. 可导,因为[f(x0+3Δx)

江湖求救:高数:f(x)在x=x0处极限不存在,则f(x)在x0 处不连续.请问命题是否争取. 高数函数极限 连续 若f(x)在x0的领域内有定义,且f(x0-0)=f(x0+0),则f(x)在x0处是否有极限,是否连续? 已知函数y=f(x)在x=x0处有连续导数,则x->x0时[f(x0-x)-f(x0+x)]/x的极限? 大一 高数 连续 可导 极限如果F(x)在x0的空心领域内可导F'(x)=f(x)且F(x)在x0处连续 是不是说1. f(x)在x0的空间领域内也连续?2.只有在x0的空心领域内,F(x)才能是f(x)的原函数?3.F(x)的可导区间要与 f(x 连续,导数,极限综合题,函数f 在x=x0处连续,且lim(x->x0) f(x)/(x-x0)=A 求 f'(x0)=? 高数函数的极限中的定理1怎么证明函数f(x)当X→x0时极限存在的充要条件是左极限和右极限各自存在并且相等即f(x0-0)=f(x0+0) 高数极限问题 x→x0时,极限不存在,是否只有f(x)→∞和函数在x0点无定义这两种情况 ..几个高数题目,关于导数的1.设f(x)在(a,b)内连续,且x0∈(a,b),则在点x0处 A.f(x) 的极限存在,且可导 B.f(x)的极限存在,但不一定可导C.f(x) 的极限不存在,但可导 D.f(x) 的极限不一定存在 高数,如果X趋向于X0,limF(X)=∞,这表示F(X)没有极限吗? f(x)的导函数即f'(x) 在x->x0+ 的极限 和 f(x)在x0处的右导数 ,这两个相等吗?大家看看我这样理解还对,如果f'(x0)存在,则必有f+'(x0)= f'(x0).如果想要limf(x)导数 (x->x0+) 与 f+'(x0)相等,只要 f'(x0)=l 大一高数极限Lim(n->∞)(1+1/3)(1+1/3^2)(1+1/3^4)…(1+1/3^(2^n))设f(x)在x=x0处可导,求极限lim(x->x0)(xf(x0)-x0f(x))/(x-x0)利用夹逼定理计算Lim(n->∞)(a^n+b^n)^(1/n),(a>0,b>0) 假设f(x)在x=x0处可求导,limt→0 [f(x0+at)-f(x0+bt)]/t的极限怎么求, 高数问题:设函数y=f(x)与y=F(x)在点x0处可导,试证曲线y=f(x)与y=F(x)在点x0处相切的充要条件是:当x趋向于x0时,f(x)-F(x)是x-x0的高阶无穷小.请给出详细证明,谢谢! 高数极值设y=f(x)在x=x0处取得极大值,则…A.f'(x0)=0 B.f`(x0)=0且f``(x0)<0C.f`(x0)=0或f'(x0)不存在 D.f''(x0)<0 标答是B 个人觉得是C 证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数 哪位高数高手来解释下极限保号性里limx→x0 f(x)和x→x0 f(x) 的区别?保号性里说 limx→x0 f(x) 和x→x0 f(x) 的区别?x→x0 f(x) 不就是 对于x0的空心邻域的x ,f(x)怎么怎么样.limx→x0 f(x) 还 一个高数里面求函数连续性问题已知f(x)在x=1处连续,f(x)为分段函数,当X0时,ln(b+x^2),求a,b答案显示解法用极限lim(x->0+)=lim(x->0-)=1来求,但是根据定义:x在x0出连续,必须满足lim(x->x0+)=lim(x 有关导数定义的极限问题设f(x)在x=x0处连续,且lim(下标:x->x0)f(x)/(x-x0)=A,则f'(x0)=?为什么呢?