21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:30:29

21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导C
21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)
21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()
Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)在x=x0点连续Df(x)在x=x0点不连续

21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导C
C

C

21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导C 21设f(x)在x=x0点左右导数均存在,则下列说法中正确的是()Af(x)在x=x0点可导Bf(x)在x=x0点不可导Cf(x)在x=x0点连续Df(x)在x=x0点不连续 x0为f(x)的第一间断点,f(x0)的左右导数存在吗 设函数f(x)在x0处有三阶导数,且f(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点 f(x)在点x0的左右导数都存在且相等是f(x)在点x0可导的什么条件 高数中关于分段函数f(x)在分段点x0的可导性问题如果f(x)在x0这一点左右导数存在,为什么可以推出f(x)在x0连续的结论?如果f(x)在x0这一点左右导数存在且相等,为什么可以推出f(x)在x0可导的结论? 函数某点导数存在 与函数某点 某邻域可导 区别如F(X0) 导数存在 与 F(x) 在X=X0的某邻域可导前者X=X0处导数存在 左导数等于右导数 那么分别趋于 +X0 于 -X0 导数都存在(X0 证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数 设f导数(x0)存在且等于4,则lim(x趋向于x0) x除以[f(x0-2x)-f(x0-x)]=__?分析:取△x=-2x+x=-x,于是由导数的定义有原极限=-1除以f’(x0)=-1/4f'(x0)在x0处的导数.这个分析我们看懂 设f(x)在x0的某一邻域内存在连续的三阶导数,且f'(x0)=f''(x0)=0,而f'''(x0)≠0.证:(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点 连续性与可导性的问题 f(x)在x0点左右导数都存在 但是左右导数不相等 能不能说明函数在x点连续性与可导性的问题 f(x)在x0点左右导数都存在 但是左右导数不相等 能不能说明函数在x 书上说:若在x0点,左右导数存在且相等,函数在该点一定可导.如分段函数 f(x)=x+2 x>0f(x)=x x f(x,y)在(x0,y0)点的偏导数存在,则f(x,y)在x=x0点连续正确吗 函数在X处可导 左右导数存在且相等比如:f(x)=2x+5 (x0)f(x)在x=0处是否可导? 函数f(x)在x=x0处可导则连续,但若f(x)在x=x0处左右导数都存在但不相等,如何具体证明其在x=x0处也连续. f(x)在x0处可导的充要条件是左右导数存在且相等.那么f(x)=x(x不等于0)在0处的左右导数是否都存在? 设f(x)g(x)在x0处可导,且f(x0)=g(x0),f'(x0)g'(x0)>0,f(x0),g(x0)存在,则,x0是否为f(x)g(x)的驻点,极值极值点为极大值还是极小值f(x0)=g(x0)=0 设函数y=f(x)在点x0处有导数,且f'(x0)>0,则曲线y=f(x)在点(x0,f(x0))处切线的倾斜角的范围是