椭圆x^2+y^2/4=1上的点到直线x+y-4=0的距离的最大值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:02:39

椭圆x^2+y^2/4=1上的点到直线x+y-4=0的距离的最大值是
椭圆x^2+y^2/4=1上的点到直线x+y-4=0的距离的最大值是

椭圆x^2+y^2/4=1上的点到直线x+y-4=0的距离的最大值是
思路:
1.设一条直线为x+2y+c=0( 这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)
2.联立x+2y+c=0和椭圆方程,得到二次函数的判别式,既△=0(直线与椭圆相切),求出c,这样就有可以求得两条直线的距离,有最大距离也有最小距离.
3.如果求最大值时的坐标,再利用△=0,就出最大值的坐标和最小值的坐标.
补充:一般在圆锥曲线中求与一条直线的最大距离或者最小距离,方法就是我上面所说的,要设与已知直线平行的直线,再利用直线与图形相切,求出未知数.

当直线x+y=m和椭圆相切时,到切点直线的距离最大
切点(√5/5,4√5/5)
然后用点到直线的距离公式,自己去算