如何用洛必达法则求lim x→0+ (sinx)^(k/1+ln x) (k为常数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:51:04

如何用洛必达法则求lim x→0+ (sinx)^(k/1+ln x) (k为常数)
如何用洛必达法则求lim x→0+ (sinx)^(k/1+ln x) (k为常数)

如何用洛必达法则求lim x→0+ (sinx)^(k/1+ln x) (k为常数)
请问你的指数部分是什么,k/(1+lnx)?
取自然对数
lim (x→0+)ln (sinx)^(k/1+ln x)
=lim (x→0+)ln (sinx)*k/(1+ln x) (0/0,用洛必达法则)
=lim (x→0+)cosx/sinx*k/(1/ x)
=lim (x→0+)kcosx*x/sinx
=k
因此
lim (x→0+) (sinx)^(k/1+ln x)
=lim (x→0+)e^ln (sinx)^(k/1+ln x)
=e^k