求证 1+2sinxcox/cos∧2x-sin∧2x=1+tanx/1-tanx tan∧2θ-sin∧2θ=tan∧2θsin∧2θ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:46:08
求证 1+2sinxcox/cos∧2x-sin∧2x=1+tanx/1-tanx tan∧2θ-sin∧2θ=tan∧2θsin∧2θ
求证 1+2sinxcox/cos∧2x-sin∧2x=1+tanx/1-tanx tan∧2θ-sin∧2θ=tan∧2θsin∧2θ
求证 1+2sinxcox/cos∧2x-sin∧2x=1+tanx/1-tanx tan∧2θ-sin∧2θ=tan∧2θsin∧2θ
第一题:
(1+2sinxcosx)/[(cosx)^2-(sinx)^2]
=[(cosx)^2+2sinxcosx+(sinx)^2]/[(cosx)^2-(sinx)^2]
=(cosx+sinx)^2/[(cosx+sinx)(cosx-sinx)]
=(cosx+sinx)/(cosx-sinx)
=(1+sinx/cosx)/(1-sinx/cosx)
=(1+tanx)/(1-tanx)
第二题:
∵(tanθ)^2/[1+(tanθ)^2]
=[(sinθ/cosθ)^2]/{[(cosθ)^2+(sinθ)^2]/(cosθ)^2}
=(sinθ)^2/[(cosθ)^2+(sinθ)^2]
=(sinθ)^2.
∴(tanθ)^2=(sinθ)^2[1+(tanθ)^2]=(sinθ)^2+(tanθ)^2(sinθ)^2,
∴(tanθ)^2-(sinθ)^2=(tanθ)^2(sinθ)^2.
注:请你注意括号的正确使用,并注意题与题之间的距离,以免产生误会.
求证 1+2sinxcox/cos∧2x-sin∧2x=1+tanx/1-tanx tan∧2θ-sin∧2θ=tan∧2θsin∧2θ
(2sin^2- 3sinxcox)/sin^2 x+cos^2 x=(2tan^2 x-3tanx)/tan^2x+1这一步骤怎么得到?
证明:1-2sinxcox/cos2x-sin2x=1-tanx/1+tanx
求证:tan x/2=sin x/(1+cos x)
求证:1-sin(x)=cos(x)*tan(x/2)
f(x)=sin x (sinx-cosx)的减单调区间?f(x)=sin x (sinx-cosx)的单调区间解如下:f(x)=sin^2 X - sinxcosx=2sinxcosx-sinxcox=sinxcox=1/2sin 2xsinx的单调减区间:π/2+2kπ < x < 3π/2+2kππ/2+2kπ < 2x < 3π/2+2kππ/4+kπ< X < 3π/4
求函数f(x)=5根号3cos^2x+根号3sin^2x-4sinxcox(兀/4≦x≦7兀/24)的最小值,并求其取得最小值时x的值.(函数要化成sin的形式)
cos4x=8cos^4x-cos^2x+1求证
求证(3-sin^4 x-cos^4 x)/2cos^2 x=1+tan^2 x+sin^2 x
求证(cos^2 x-sin^2 x)(cos^4 x+sin^4 x)+1/4 sin 2x sin 4x=cos 2x
已知函数f(x)=2根号3sinxcox-2cos2x+2 求f(x)的单调递增区间已知函数f(x)=2根号3sinxcox-2cos2x+2 求f(x)的单调递增区间要解答过程
求证 1+2sinxcosx/sin^2x-cos^2x=sin^2x-cos^2x/1-2sinxcosx
求证(cos^2x-sin^2x)(cos^4x+sin^4x)+1/4sin2xsin4x=cos2x
求证:1-cos^4x-sin^4x/1-cos^6x-sin^6x=2/3
求证:(sin x+cos x)(1-tan x)=(2sin x)/(tan2x)
已知函数f(x)=sin平方2x+2sinxcox-cox平方x,最小正周期 求函数f(x)得最小周期 x这代表X x€r
求证sin^4x-cos^4x=sin^2x-cos^2x
1-tan*2x/1+tan*2x=cos*2x-sinx求证