an=(3n-2)(1/2)^(n-1),求{an}前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:32:48
an=(3n-2)(1/2)^(n-1),求{an}前n项和
an=(3n-2)(1/2)^(n-1),求{an}前n项和
an=(3n-2)(1/2)^(n-1),求{an}前n项和
Sn=a1+a2+a3+...+an
=(3-2)(1/2)^0+(6-2)(1/2)^1+(9-3)(1/2)^2+...+(3n-5)(1/2)^(n-2)+(3n-2)(1/2)^(n-1)
Sn/2
= (3-2)(1/2)^1+ (6-2)(1/2)^2+...+(3n-8)(1/2)^(n-2)+(3n-5)(1/2)^(n-1)+(3n-2)(1/2)^n
两式相减得:
Sn/2
=1+3*(1/2)^1+3*(1/2)^2+...+3*(1/2)^(n-1)-(3n-2)(1/2)^n
=1+3*(1-(1/2)^(n-1))-(3n-2)(1/2)^n
=1+3-3*(1/2)^(n-1)-3n(1/2)^n+(1/2)^(n-1)
=4-(1/2)^(n-2)-3n(1/2)^n
所以
Sn=8-(1/2)^(n-3)-3n(1/2)^(n-1)
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
数列{an},a1=1,an+1=2an-n^2+3n,求{an}.
设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
数列{an}中,a1=2,an+1=4an-3n+1,求证{an-n}是等比数列 4an中n为下标an+1中n+1为下标an-n中an的n为下标
已知a1=2 a(n+1)=2an+2^n+3^n 求an
an=(3n-2)(1/2)^(n-1),求{an}前n项和
数列an,an=(2n-1)+1/【3n(n+1)】,求Sn
求数列an=n(n+1) 的前n项和 到 an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)
已知数列{an}满足a1=1,且an=1/3a(n-1)+(1/3)^n (n≥2,且n∈N+),则数列{an}的通项公式为A.an=3^n/(n+2) B.an=(n+2)/3^n C.an=n+2 D.an=(n+2)3^n
an=(2n-1)3^n,Sn=?
已知an=(2n+1)*3^n,求Sn
f(n+1)>f(n),f(f(n))=3n.n属于正整数.令an=f(3*n次方),证明n/4n+2
已知数列{an},其中a1=1,a(n+1)=3^(2n-1)*an(n∈N),数列{bn}的前n项和Sn=log3(an/9^n)(n∈N)求an bn
An=C(1,n)a1+C(2,n)a2+…C(n,n)an,若an=1+2+3+……+n(n∈N),试用n表示An.
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列{an},a1=3,an*a(n+1)=(1/2)^n,求an
已知数列{an}中,a(n+1)=an+2^n,a1=3,求an
裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题 裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题