设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:36:54
设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
An=1/(n+1)+1/(n+2)+…+1/(2n-1)+1/(2n)
则
An+1=1/(n+2)+1/(n+3)+…+1/(2n-1)+1/(2n)+ 1/(2n+1)+1/(2n+2)
则
An+1-An
=1/(2n+1)+1/(2n+2)-1/(n+1)
=1/(2n+1)-1/(2n+2)
=1/[(2n+1)(2n+2)]
设an=(1/n+1)+(1/n+2)+(1/n+3)+...+1/2n,则an+1-an等于?
设bn=(n-1)/(an-2),(n大于等于2),an=n^a-n+2,且b(n+1)+b(n+2)+...b(2n+1)
设数列an=(2n+1)/(3n+1),(n=1,2,3,...)求N,使n>N时,不等式|an-2/3|
已知数列{An}的通项公式为An=(2*3^n+2)/(3^n-1) (n∈N*)设m、n、p∈N*,m
设数列{an}中,a1=2,an+1=an+n+1,则通项an=?
设数列{an}中,an=-2[n-(-1)^n],求S10和S99
设lim n→∞ n^[2nsin(1/n)]* an=1,讨论∑an 的敛散性.
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)求通项an
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
3 数列{an}的通项公式an=(-1)^(n-1)*2n(n属于N*)设其前n项和为Sn,则S100=
设an=根号下n(n+1) 数列an前n项和为sn ,求证:[n(n+1)]/2
设an=根号下n(n+1) 数列an前n项和为sn ,求证:[n(n+1)]/2
已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn
设数列{an}中,a1=1且(2n+1)an=(2n-3)a(n-1),(n大于等于2),求{an},sn
设数列{an},a1=2,a(n+1)=an+In·(1+1/n),求an
设{an}等差,且an + an+2+ am + am-2 =m+n-1,求Sm+n-1
设数列﹛an﹜中,a1+4,an=3a(n-1)+2n-1,求通项an
设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”求第二问证明设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”,若a1 =1,