n 证明:(1+1/2+1/3+...+1/n)∑ln[k(k+1)(k+2)>(n-1/4)ln(e^n/n!) (n∈N*) k=1n k=1 是∑的上下界
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:54:17
n 证明:(1+1/2+1/3+...+1/n)∑ln[k(k+1)(k+2)>(n-1/4)ln(e^n/n!) (n∈N*) k=1n k=1 是∑的上下界
n 证明:(1+1/2+1/3+...+1/n)∑ln[k(k+1)(k+2)>(n-1/4)ln(e^n/n!) (n∈N*) k=1
n k=1 是∑的上下界
n 证明:(1+1/2+1/3+...+1/n)∑ln[k(k+1)(k+2)>(n-1/4)ln(e^n/n!) (n∈N*) k=1n k=1 是∑的上下界
数学归纳法
n=1时,成立
假设n=m时成立
n=m+1时分成四部分,联系已知.进行放缩即可
提供几个方法吧!数学归纳法,放缩法。应该能搞定…
-_-这是高中几年级的。。。。。。
关注下
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明不等式 1+2n+3n
证明2/(3^n-1)
证明…3整除n(n+1)(n+2)
排列证明题证明:1*1!+2*2!+3*3!.n*n!=(n+1)!-1
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
证明:(3^n)*(2^1/n)>(3^n)+(2^1/n)……n属于正整数
n≥3,n∈N,证明3的n-1次幂>2n-1
证明3^n-2^n>2^n,(n>1,n∈Z)
证明:3^n>1+2n(n>=2,n∈N*)
证明n(n+1)(n+2)(n+3)(n+4)是一个完全平方数
证明不等式 3^n>(n+1)!
证明不等式 (n+1)/3
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
证明:1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=3^n .(n∈N+)
证明(1+1/n)^n
怎样证明n/(n+1)