证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 16:37:32
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
利用柯西不等式:
∵[1/(n+1)+1/(n+2)+……+1/(2n)]^2
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明(1+1/n)^n
怎样证明n/(n+1)
证明ln(n+1/n)
证明[n/(n+1)]^(n+1)
证明:(n+1)n!= (n+1)!
证明不等式 1+2n+3n
((n+2)/(n+1))^(n+1)>2求证明
证明 6n/(n+1)(2n+1)
已知n∈N,n>=2,证明:1/2
证明…3整除n(n+1)(n+2)
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
证明:1/(n+1)
证明1/(n+1)
证明2/(3^n-1)
证明ln(n+1)
证明ln(n+1)
n为正整数,证明:n[(1+n)^1/n-1]