a>0,求函数Fx=根号下x-ln(x+a)(xE(0,正无穷大)的单调区间,利用导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:12:53

a>0,求函数Fx=根号下x-ln(x+a)(xE(0,正无穷大)的单调区间,利用导数
a>0,求函数Fx=根号下x-ln(x+a)(xE(0,正无穷大)的单调区间,
利用导数

a>0,求函数Fx=根号下x-ln(x+a)(xE(0,正无穷大)的单调区间,利用导数
f'(x)=1/(2*sqrt(x))-1/(x+a)=(x+a-2*sqrt(x))/(2*sqrt(x)*(x+a))
根据条件x>0,a>0,所以分母大于0,只需观察分子.令sqrt(x)=t(t>0),
所以x=t^2.
x+a-2*sqrt(x)等效于t^2-2t+a,令y=t^2-2t+a.m(德尔塔,不知道怎么打)
=4-4a,当a>1时,m0,即f(x)在(0,正无穷)单增;
当0