若n是整数,证明(2n+1)的平方-(2n-1)的平方是8的倍数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:38:41

若n是整数,证明(2n+1)的平方-(2n-1)的平方是8的倍数
若n是整数,证明(2n+1)的平方-(2n-1)的平方是8的倍数

若n是整数,证明(2n+1)的平方-(2n-1)的平方是8的倍数
(2n+1)²-(2n-1)²
=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]
=(2n+1+2n-1)(2n+1-2n+1)
=4n×2
=8n
所以是8的倍数

(2n+1)²-(2n-1)²
=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]
=(2n+1+2n-1)(2n+1-2n+1)
=4n×2
=8n
所以是8的倍数