设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:51:07
设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2
设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2
设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2
本题证明有一定的技巧,下面给出两种证法,其中第二种证法需用到二重积分,如没学过二重积分,只看第一种证法即可.
设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在(a,b)有F'(x)≤0
设f'(x)在[a,b]上连续,证明:lim(λ→+∞)∫(a,b)f(x)cos(λx)dx=0
高数证明题:设函数f(x)在区间[0,1]上连续,证明
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
设f(x)在(-无穷,+无穷)内连续,证明(d/dx)∫(0~x)(x-t)f'(t)dt=f(x)-f(a)
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
证明:设f(x)在x=0连续,且lim(x→0) (f(x)/x)=1,则必有f'(0)=1
设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt
设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt
f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
求设f'(x)在[0,a]上连续.f(0)=0,证明|定积分f(x)d(x)
设f(x)在区间(-∞,+∞)内单调增加,limf(x)=1(x→0),证明f(x)在x=0处连续
证明:设f(x)在[a,b]上连续,在(a,b)内可导,(0
设F(X)在[0,1]中连续,证明 ∫0~1/2 f(1-2x)dx =1/2∫0~1 f(X)dx
设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f(a),其中A
设f(x)在[-a,a]( a>0,a为常数)上连续,证明:∫(-a→a)f(x)dx=∫(0→a)[f(x)+f(-x)]dx
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明