老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:19:57
老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
这个写出来比较麻烦
你这么理解吧:
系数矩阵A有一个非零的 r(A) 阶子式
这个子式所在列对应的未知量是约束未知量, 其余未知量是自由未知量,有n-r(A)个
自由未知量任意取定一组数, 由Cramer 法则知可唯一确定约束未知量
那么让自由未知量分别取 (1,0,...,0), (0,1,...,0),(0,0,...,1) 即得一组线性无关的解向量 ( n-r(A)个)
--这是因为 线性无关的向量组 添加若干个分量仍线性无关
老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
两个非齐次线性方程组的向量证明题帮我证两个题,1.A是m×n矩阵,r(A)=m,证明:线性方程组Ax=b一定有解 2.设η是非齐次线性方程组Ax=b的任意一个解,ξ1,ξ2 … ξm 是其相伴方程组Ax=0的任意m个线性
两个非齐次线性方程组的向量证明题帮我证两个题,1.A是m×n矩阵,r(A)=m,证明:线性方程组Ax=b一定有解2.设η是非齐次线性方程组Ax=b的任意一个解,ξ1,ξ2 … ξm 是其相伴方程组Ax=0的任意m个线性
证明r(A)=n时,齐次线形方程组有唯一零解,用秩的概念
问一道关于线代的问题,急!设A是m*n实矩阵,B是m阶实方阵,证明:(1)齐次方程组AX=0与齐次方程组BAX=0同解的充要条件为r(A)=r(BA)(2)利用(1),证明:r(A)=r(ATA)=r(AAT)
设x0是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明1,x0,x0+a0,x0+a2...xo+an-r是方程组AX=b的n-r+1个线性无关的解向量2AX=b的任意解X可表示成:X=k0X0+k1(X0+a1
设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.
关于齐次线性/非齐次线性方程的几个问题1’若AX=0只有零解,则AX=b有唯一解,为什么不对?2‘AX=b有唯一解的充要条件是r(A)=n,为什么又不对?3’对于AX=b,A是m*n的,当r(A)=m时,方程组有解.可否
向量组等价 与 方程组同解矩阵A,B的行向量组等价的充分必要条件是齐次方程组Ax=0与Bx=0同解.书上只证明啦充分性,必要性怎么证明呢?就是 怎么有矩阵A,B的行向量组等价得出齐次方程组Ax=0与B
线代证明,设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础解析,则
关于非齐次方程组的解的问题设η*是非齐次方程组AX=b的一个解,ξ1,ξ2,……,ξn-r是对应的齐次方程组的一个基础解系,证明⑴η*,ξ1,ξ2,……,ξn-r线性无关;⑵η*,η*+ξ1,η*+ξ2,……,η*+ξn-r线性无关.
证明:r(A*)=n 那么r(A)=n .请问老师怎么证明?另外有n-1阶非零子式子 所以r(A*)>=1是为什么呢?
设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为
老师,线性代数问题老师,为什么非齐次任意两个解的差是对应齐次方程组的解?还有矩阵AB=0为什么能推出r(A)+r(B)小于等于n?
设有齐次线性方程组AX=0,其中A为m*n矩阵,X为n维列向量,R(A)=r,则方程组AX=0的基础解系中有几个向量,当r= 时,方程组只有零解
设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证(1)X0,α1,α2,…,αn-r线性无关(2)X0,X0+α1,X0+α2,…,X0+αn-r是方程组AX=b的n-r+1个线性无关的
矩阵与解向量的问题设A是n阶矩阵,对齐次线性方程组AX=0,如果每个n维向量都是方程组的解,则r(A)=?每个n维向量都是方程组的解能说明什么?我感觉只能说它有非零解.这个r(A)怎么判断出结果?
线性代数题 设含m个方程和n个未知向量的非齐次线性方程组AX=b关于任意一个m维常熟向量b都有解则第二个问题:设A是M*N阶矩阵,则对于齐次线性方程组AX=0有:A若r=m则方程组只有零解B若A的列