设数列〔an〕满足a1=1,a2=5/3(5分之3),an+2=5/3an+1-2/3an.求an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:56:23

设数列〔an〕满足a1=1,a2=5/3(5分之3),an+2=5/3an+1-2/3an.求an
设数列〔an〕满足a1=1,a2=5/3(5分之3),an+2=5/3an+1-2/3an.求an

设数列〔an〕满足a1=1,a2=5/3(5分之3),an+2=5/3an+1-2/3an.求an
你写的分数分不清是几,但做题思路是这样,令n=1,带入an+2=5/3an+1-2/3an,得到a3,再令n=2,得到a4,发现规律了没,总结规律,然后加以验证即可

an=3(1-(2/3)的n次方)

由 a(n+2) = 5/3a(n+1) - 2/3an可得,
a(n+2) - a(n+1) = 2/3[a(n+1)-an]
[a(n+2)-a(n+1)] / [a(n+1)-an] = 2/3
设 [a(n+1)-an] = bn
则 b(n+1)/bn = 2/3
b1 = a2 - a1 = 2/3
所以,bn = 2/3 ...

全部展开

由 a(n+2) = 5/3a(n+1) - 2/3an可得,
a(n+2) - a(n+1) = 2/3[a(n+1)-an]
[a(n+2)-a(n+1)] / [a(n+1)-an] = 2/3
设 [a(n+1)-an] = bn
则 b(n+1)/bn = 2/3
b1 = a2 - a1 = 2/3
所以,bn = 2/3 *(2/3)^(n-1) = (2/3)^n
所以,a(n+1)-an = (2/3)^n
那么,an-a(n-1) = (2/3)^(n-1)
a(n-1)-a(n-2) = (2/3)^(n-2)
: : :
: : :
a2 - a1 = 2/3
将以上n项相加,得,
a(n+1) - a1 = 2/3*[1-(2/3)^n]/(1-2/3)
a(n+1) - 1 = 2*[1-(2/3)^n]
a(n+1) = 3 - 2*(2/3)^n
即,an = 3 - 2*(2/3)^(n-1)
那所谓的满意回答 太扯了吧
求数列是有方法的 这个数列不是规律数列 所以不能一一求a3 ,a4

收起

设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 设数列{an}满足lg(1+a1+a2+...+an)=n+1,求通项公式an 设数列〔an〕满足a1=1,a2=5/3(5分之3),an+2=5/3an+1-2/3an.求an 设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)求通项an 设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an 设数列{An}满足A1+3A2+3²A3+…+3n-1An=3/n.(1)求数列{An}的通项. 设数列{an}满足a1+3a2+3平方a3+...+3n-1an=n/3,n属于N*.求数列{an}的通项公式? 设数列an满足a1+3a2+3²a3+…+3^n-1(an)=n/3,求数列an的通项公式 数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an 设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式rt 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项 设数列{an}满足a1=1a2=2an=1/3(an-1+2an-2)求an题目为设数列{an}满足a1=1,a2=2,an=1/3(an-1+2an-2)求an 设数列an满足a1+3a2+3²a3+.+3的n-1次方 an=n/3 求an的通项公式 设数列{an}满足a1+3a2+3^2a3+...+3^(n-1)an=n/3求an的通项 设数列{An}满足A1+3A2+3²A3+******+3^(n-1)An=n/31、求{An}通项公式 已知数列{an}满足a1=3,(an+1)-3an=3^n(n,n∈N*),数列{bn}满足bn=3^(-n)an求证:数列{bn}是等差数列设sn=(a1)/3+(a2)/4+(a3)/5+.(an)/(n+2),求满足1、128<sn/s2n<1/4的所有正整数n的值 数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1设Sn=1/a1+1/a2+...+1/an,n>2证明1 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an