设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式rt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:38:10
设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式rt
设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt
设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式
rt
设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式rt
令bn=A(n+1)-An
A(n+1)-An是等差数列
b2=A3-A2=-1
b1=A2-A1=-2
所以bn的公差是-1-(-2)=1
所以bn=-2+1*(n-1)=n-3
所以A(n+1)-An=n-3
所以
An-A(n-1)=n-4
A(n-1)-A(n-2)=n-5
……
A3-A2=-1
A2-A1=-2
相加
An-A1=(n-4)+(n-5)+……+(-2)=(n-4-2)(n-1)/2=(n^2-7n+6)/2
A1=6
所以An=(n^2-7n+18)/2
令bn=A(n+1)-An
A(n+1)-An是等差数列
b2=A3-A2=-1
b1=A2-A1=-2
所以bn的公差是-1-(-2)=1
所以bn=-2+1*(n-1)=n-3
所以A(n+1)-An=n-3
所以
An-A(n-1)=n-4
A(n-1)-A(n-2)=n-5
……
A3-A2=-1
全部展开
令bn=A(n+1)-An
A(n+1)-An是等差数列
b2=A3-A2=-1
b1=A2-A1=-2
所以bn的公差是-1-(-2)=1
所以bn=-2+1*(n-1)=n-3
所以A(n+1)-An=n-3
所以
An-A(n-1)=n-4
A(n-1)-A(n-2)=n-5
……
A3-A2=-1
A2-A1=-2
相加
An-A1=(n-4)+(n-5)+……+(-2)=(n-4-2)(n-1)/2=(n^2-7n+6)/2
A1=6
所以An=(n^2-7n+18)/2
记得采纳额
收起