设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:40:40

设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.
设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3
若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.

设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.
因为an+1-an为等差数列,a2-a1=-2,a3-a2=-1解得公差为1,an+1-an=-2+(n-1)*1=n-3然后根据叠加法算an
a2-a1=-2,a3-a2=-1,.an-an-1=n-4,吧这些等式全部加在一起的an-a1=(-2+n-4)/2*n
利用同种方法先解bn+1-bn的通向公式再根据叠加法算bn
b2-b1=-2,b3-b2=-1,解得公比为1/2,所以bn+1-bn=-2*(1/2)^(n-1)
左边之和为bn-b1=-2*(1-(1/2)^n)/(1-1/2)(等比数列求和公式)

自己算

设{an+1-an}为{Tn},则T1=-2,T2=-1,d=1.首项为-2,即Tn=-(n+1)
同理得{bn+1-bn}=-2(-1)^(n-1)

你的an+1和bn+1里的1在外面还是里面啊?

设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式. 设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1 -an}是等差数列,{bn+1-bn}是等比数列.1.求An Bn 通项2.求数列AN最小项及最小值3.是否存在K属于N*,使ak-bk属于(0.0.5)若存 设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{a(n+1)-an}是等差数列,{bn-2}是等比数列(2)设{nbn}的前n项和为Sn,求Sn的表达式(3)数列{C 设数列An,Bn满足a1=b1=6,a2=b2=4,a3=b3=3,且数列A(n+1)-An(n属于正整数)是等差数列.设数列An,Bn满足a1=b1=6,a2=b2=4,a3=b3=3,且数列A(n+1)-An(n属于正整数)是等差数列,sn为数列{BN}的前几项和,且sn=2n-bn+101)求数 设数列an为等比数列,数列bn满足bn=na1+(n-1)a2+...+2an-1+an已知b1=1,b2=4第一问为什么可以“由已知b1=a1” 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 等差等比数列应用设数列{An}和{Bn}满足A1=B1=6,A2=B2=4,A3=B3=3,且数列{A(n+1)-An}是等差数列,数列{Bn-2}是等比数列(1)设,求数列{Cn}的通项公式(2)求数列{An}和{Bn}的通项公式 数列{an}{bn}满足an=5an-1 -6bn-1 bn=3an-1 -4bn-1 且a1=a,b1=b求{an}{bn}通项 数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为 数列[an},a1=2,an+1=an+2^n+1,设{bn}满足bn=2log2(an+1-n),证明(1+1/b1)(1+1/b2)……(1+1/bn)对一切n为正整数成立 设数列an,bn分别满足a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+1)求数列an和bn的通项公式 设数列an与数列bn满足a1=b1=1,bn/an=1/a1 +1/a2+……+1/an-1,求证:设(1+1/b1)(1+1/b2)……(1+1/bn)=入(1/a1+1/a2+……1/an).求实数入的值老师说用数学归纳法,怎么证明 设数列{an}和{bn}满足a1=b1=6,a2=b2=3,且数列{a(n+1)-an}是等差数列,数列{bn-2}是等比数列1 求数列{an}和{bn}的通项公式2 是否存在k属于正整数,使ak-bk属于(0,1/2)?若存在,求出k,若不存在,为什么? 设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列,{bn-2}是等比数列(1)求列数{an}和{bn}的通项公=式(2)设{nbn}的前n项和为Sn,求Sn的表达式(3)数列{Cn}满足Cn=an*(bn+2-2),求数列{Cn}的最大 已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!!