梯形ABCD中,AD平行BC,∠DCB=90,CD=2,BD⊥CD,过点C作CE⊥AB,交对角线BD于F,G为BC的中点,连接EG、AF?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:49:13
梯形ABCD中,AD平行BC,∠DCB=90,CD=2,BD⊥CD,过点C作CE⊥AB,交对角线BD于F,G为BC的中点,连接EG、AF?
梯形ABCD中,AD平行BC,∠DCB=90,CD=2,BD⊥CD,过点C作CE⊥AB,交对角线BD于F,G为BC的中点,连接EG、AF?
梯形ABCD中,AD平行BC,∠DCB=90,CD=2,BD⊥CD,过点C作CE⊥AB,交对角线BD于F,G为BC的中点,连接EG、AF?
(1)求EG的长;
(2)求证:CF=AB+AF.
(1)
∵BD⊥CD,∠DCB=45°
∴△DBC是等腰直角三角形
∵CD=2
∴BC=2√2
∵G是BC的中点
∴EG=1/2BC=√2
(2)
证明:
延长BA,交CD的延长线于点M
∵AD⊥CD,∠DCB=45°
∴AD=CD
∵CE⊥AB
∴∠MBD+∠M=∠BCE+∠M=90°
∴∠MBD=∠MCF
∴△MBD≌△FDC
∴CF=BM,MD=FD
∵∠MDA=∠ADB=45°
∴△MAD=∠FAD
∴△MAD≌△FAD
∴AM=AF
∴CF=BM=AB+AM=AB+AF
(1)∵BD⊥CD,∠DCB=45°, ∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC==2, ∵CE⊥BE,点G为BC的中点, ∴EG=BC=. 答:EG的长是. (2)证明:在线段CF上截取CH=BA,连接DH, ∵BD⊥CD,BE⊥CE, ∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°, ∵∠EFB=∠DFC, ∴∠EBF=∠DCF, ∵DB=CD,BA=CH, ∴△ABD≌△HCD, ∴AD=DH,∠ADB=∠HDC, ∵AD∥BC, ∴∠ADB=∠DBC=45°, ∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°, ∴∠ADB=∠HDB, ∵AD=HD,DF=DF, ∴△ADF≌△HDF, ∴AF=HF, ∴CF=CH+HF=AB+AF, ∴CF=AB+AF.
1)求EG的长;
(2)求证:CF=AB+AF.
(1)
∵BD⊥CD,∠DCB=45°
∴△DBC是等腰直角三角形
∵CD=2
∴BC=2√2
∵G是BC的中点
∴EG=1/2BC=√2
(2)
证明:
延长BA,交CD的延长线于点M
∵AD⊥CD,∠DCB=45°
∴AD=CD
∵C...
全部展开
1)求EG的长;
(2)求证:CF=AB+AF.
(1)
∵BD⊥CD,∠DCB=45°
∴△DBC是等腰直角三角形
∵CD=2
∴BC=2√2
∵G是BC的中点
∴EG=1/2BC=√2
(2)
证明:
延长BA,交CD的延长线于点M
∵AD⊥CD,∠DCB=45°
∴AD=CD
∵CE⊥AB
∴∠MBD+∠M=∠BCE+∠M=90°
∴∠MBD=∠MCF
∴△MBD≌△FDC
∴CF=BM,MD=FD
∵∠MDA=∠ADB=45°
∴△MAD=∠FAD
∴△MAD≌△FAD
∴AM=AF
∴CF=BM=AB+AM=AB+AF
收起
AD//BC
请给我问题。。。
(1)∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .
答:EG的长是 .
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DF...
全部展开
(1)∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .
答:EG的长是 .
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
收起
掉了角dcb=45°