设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么那么f(x)=g(x)=h(x)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:44:56
设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么那么f(x)=g(x)=h(x)=0
设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么
那么f(x)=g(x)=h(x)=0
设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么那么f(x)=g(x)=h(x)=0
假设f(x)并非恒等于0,设f(x),g(x),h(x)的次数分别是a,b,c,那么由式子可以得到2a=max(1+2b,1+2c),左边是偶数,右边是奇数,这不可能.所以f(x)恒等于0,于是由平方的非负性可以得到f(x)=g(x)=h(x)=0
设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么那么f(x)=g(x)=h(x)=0
已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2,试判断g(x)与h(x)的奇偶性.已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2,1.试判断g(x)与h(x)的奇偶性.2试判断g(x),h(x
设f(x),g(x),h(x)是实数域上的多项式.证明:若f(x)=xg(x)+xh(x)那么f(x)=g(x)=h(x)=0
已知a,b是实数,函数f(x)=x^3+ax,g(x)=x^2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在函数区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.1.设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,
设f(x)是定义在x>1上的函数,其导函数为f'(x).如果存在实数a 和函数h(x),其中h(x)对任意的x>1都 有h(x)>0使得f'(x)=h(x)(x^2-ax+1),则称函数f(x)具有性质P(a).设函数f(x)=lnx+(b+2)/(x+1),其中b为实数.(1)求证
离散数学如何求复合函数g.f1.设R为实数集合,对x属于R,有f(x)=x+2;g(x)=x-2;h(x)=3x,求g.f与h.(g.f)f=(|x属于R),h.(g.f)=(|x属于R).我想问,g.f不是=(|x属于R)吗,这里的复合函数不是将f(x)的x,和g(x)的y组合在一
已知f(x)=ax^2-|x|+2a-1(a为实常数)1)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.2)设h(x)=f(x)/x,若函数h(x)在区间[1,2]是增函数,求实数a的取值范围.
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数g(x)及奇函数h(x),使得f(x)=g(x)+h(x)假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),且g(-x)=g(x),h(-x)=-h(x)于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)利用(1)、(2
1.设R为实数集合,对x属于R,有f(x)=x+2;g(x)=x-2;h(x)=3x,求g.f与h.(g.f)f=(|x属于R),h.(g.f)=(|x属于R).我想问,g.f不是=(|x属于R)吗,这里的复合函数不是将f(x)的x,和g(x)的y组合在一起么,我不太懂,求教还有一
已知a,b是实数,函数f(x)=x^3+ax,g(x)=x^2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致,现设a<0,且a≠b,若函数f(x
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x).书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1), 且g(-x)=g(x),h(-x)=-h(x) 于是
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x)书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1), 且g(-x)=g(x),h(-x)=-h(x) 于是有
已知函数f(x)=√x,g(x)=x/(4x-a),函数g(x)在(1,+∞)上单调递减.(1)求实数a的取值范围(2)设函数h(x)=f(x).g(x),x∈[1,4],求函数y=h(x)的最小值
设f(x)和g(x)都为奇函数,H(x)=af(x)+bg(x)+2……设f(x)和g(x)都为奇函数,H(x)=af(x)+bg(x)+2在区间(0,+无穷)上有最大值5,求H(x)在区间(-无穷,0)上的最小值
已知a,b是实数,1和-1是函数f(x)=x^3+ax^2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g’(x)=f(x)+2,求g(x)的极值点.(3)设h(x)=f(f(x))-c,其中c属于【-2,2】,求函数y=h
已知函数f(x)在R上有定义,对任意实数a〉0和任意实数x,都有f(ax)=af(x).(1)证明f(0)=0(2)证明f(x)=kx,x≥0hx,x〈0其中k和h均为常数(3)当(2)中的k大于0时,设g(x)=[1/f(x)]+f(x
设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x) (2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)请大侠们帮
设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(x)g'(x)A.F(X)G(B)>F(B)G(X)B.F(X)G(A)>F(A)G(X)C.F(X)G(X)>F(B)G(B)D.F(X)G(X)>F(A)G(A)