设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x) (2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)请大侠们帮

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:31:41

设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x) (2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)请大侠们帮
设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x)
(2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)
请大侠们帮助小弟,

设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x) (2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)请大侠们帮
一楼楼主回答的很精彩啊,可惜是.,哈哈.
这道题主要是考查导数的定义的应用!
正确答案是g(x)
正确答案如下:
f'(x)= lim [f(x+h)-f(x)]/[(x+h)-x]
h->0
= lim[f(x+h)-f(x)]/h
h->0
由于f(x+h)=f(x)g(h)+f(h)g(x)
所以上式还可以化为:
f'(x)= lim〔f(x)g(h)+f(h)g(x)-f(x)]/h
h->0

= limf(x)*[g(h)-1]/h + limf(h)g(x)/h
h->0 h->0

=limf(x)*[g(h)-g(0)]/h +limg(x)*[f(h)-f(0)]/h
h->0 h->0

=f(x)*g'(0)+g(x)*f'(0)

=g(x)

设f(x)在负无穷到正无穷有连续的二阶导数,且f(0)=0,设g(x)=f(x)/x,x不等于0;g(x)=a,x=0确定a的值,使g(x)在负无穷到正无穷内是连续的 设f(x)和g(x)都为奇函数,H(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则H(x)在区间(负无穷,0)上的最小值为? 设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x) (2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)请大侠们帮 一道数学的集合题.f(x)=x/(1-x) 在( )A (负无穷,1)并(1,正无穷)上是增函数B (负无穷,1)并(1,正无穷)上是减函数C (负无穷,1)和(1,正无穷)上是增函数D (负无穷,1)和(1,正无穷)上 已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,则F(x)在(负无穷,0)上最小值 已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增.求证:y=f(x)在负到0也增 关于极限不等式性质证明题原题:设f(x)在负无穷到正无穷可导,且limf(x)=limf(x)=Ax->+无穷 x->-无穷求证:,存在c在(负无穷,正无穷),使得f'(x)=0由极限不等式性质转化为有限区间的情形若f(x) 正态分布数学期望问题(含绝对值)已知正态分布,X~N(0,1),求E|x|,我知道有个公式:Ex=xf(x)在负无穷到正无穷上的积分.所以本题可以写成:E|x|=|x|f(x)在负无穷到正无穷上的积分.请问这俩个f(x) 若h(x),g(x)都是奇函数,f(x)=mh(x)+ng(x)+2在(0,正无穷)上有最大值,则f(x)在(负无穷,0)上最小值为多 求解三道关于函数,集合的数学题!谢谢1.若f(x),g(x)为奇函数,F(x)=af(x)+bg(x)+2,在(0,正无穷)上有最大值5,求F(x)在(负无穷,0)上最值2.若f(x)是偶函数,在【0,正无穷)上,f(x)=x-1 ,求f(x) 关于极限不等式性质证明题原题:设f(x)在负无穷到正无穷可导,且limf(x)=limf(x)=A x->+无穷 x->-无穷求证:,存在c在(负无穷,正无穷),使得f'(x)=0答案给的:由极限 设函数f[x]是定义在(负无穷,正无穷)上的增函数,如果不等式f(1-ax-x^2) 高数,F(x)=如下图,其中f(u)在负无穷到正无穷上连续,求F(x)的导数 高数,F(x)=如下图,其中f(u)在负无穷到正无穷上连续,求F(x)的导数 设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数 设函数f(x)在(负无穷,0)并上(0,正无穷)上是奇函数,又f(x)在零到正无穷上是减函数.并且f(x) 若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.此函数的一致连续是什么意思?又怎样去证明该命题成立? 设函数f(x)是定义在(负无穷,正无穷)上的增函数,如果f(1-ax-x)