数列an的通项为an=ncos(nπ/2+π/6)(n属于N*),Sn为其前n项和,则S2012

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:52:15

数列an的通项为an=ncos(nπ/2+π/6)(n属于N*),Sn为其前n项和,则S2012
数列an的通项为an=ncos(nπ/2+π/6)(n属于N*),Sn为其前n项和,则S2012

数列an的通项为an=ncos(nπ/2+π/6)(n属于N*),Sn为其前n项和,则S2012
cos(1*π/2+π/6)=cos(5*π/2+π/6)=...=-1/2
cos(2*π/2+π/6)=cos(6*π/2+π/6)=...=-√3/2
cos(3*π/2+π/6)=cos(7*π/2+π/6)=...=1/2
cos(4*π/2+π/6)=cos(8*π/2+π/6)=...=√3/2
Sn=[1*(-1/2)+5*(-1/2)+...+2009*(-1/2)+2*(-√3/2)]+[6*(-√3/2)+...+2010*(-√3/2)+3*(1/2)+7*(1/2)+...+2011*(1/2)]+[4*(√3/2)+8*(√3/2)+...+2012*(√3/2)]
=-1/2*(1+5+...+2009)-√3/2(2+6+...+2010)+1/2*(3+7+...+2011)+√3/2*(4+8+...+2112)
=1/2*[(3+7+...+2011)-(1+5+...+2009)]+√3/2*[(4+8+...+2112)-(2+6+...+2010)]
=1/2*2*503+√3/2*2*503
=503(√3+1)