在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,tan∠C*tan∠BAM=1,判断△ABC形状求∠BAC的余弦值!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:00:32
在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,tan∠C*tan∠BAM=1,判断△ABC形状求∠BAC的余弦值!
在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,tan∠C*tan∠BAM=1,判断△ABC形状
求∠BAC的余弦值!
在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,tan∠C*tan∠BAM=1,判断△ABC形状求∠BAC的余弦值!
△ABC是等腰三角形
(I)设∠BAM=α,∠MAC=β,
则由tanC=cotα得α+C=90°∴β+B=90°
△ABM中,由正弦定理得
BM
sinα
=
AM
sinB
,即
sinB
sinα
=
AM
MB
.
同理得
sinC ...
全部展开
(I)设∠BAM=α,∠MAC=β,
则由tanC=cotα得α+C=90°∴β+B=90°
△ABM中,由正弦定理得
BM
sinα
=
AM
sinB
,即
sinB
sinα
=
AM
MB
.
同理得
sinC
sinβ
=
AM
MC
,
∵MB=MC,∴
sinB
sinα
=
sinC
sinβ
,
∴sinαsinC=sinβsinB∵α+C=90°,β+B=90°,∴sinαcosα=sinβcosβ
即sin2α=sin2β,∴α=β或α+β=90°
当α+β=90°时,AM=
1
2
BC=MC,
与△AMC的三边长是连续三个正整数矛盾,
∴α=β,∴∠B=∠C,∴△ABC是等腰三角形.
(II)在直角三角形AMC中,设两直角边分别为n,n-1,斜边为n+1,
由(n+1)2=n2+(n-1)2得n=4,
由余弦定理或二倍角公式得cos∠BAC=
7
25
.
或cos∠BAC=-
7
25 .
收起