tanα+cotα=3,则sinαcosα为多少,tan^2α+cot^2α为多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:22:47
tanα+cotα=3,则sinαcosα为多少,tan^2α+cot^2α为多少?
tanα+cotα=3,则sinαcosα为多少,tan^2α+cot^2α为多少?
tanα+cotα=3,则sinαcosα为多少,tan^2α+cot^2α为多少?
tanα+cotα
=sinα/cosα+cosα/sinα
=(sinα*sinα+cosα*cosα)/(sinαcosα)
=1/(sinαcosα)
=3
所以sinαcosα=1/3
tan^2α+cot^2α
=(tanα+cotα)^2-2
=3^2-2
7
tanα+cotα=sinα/cosα+cosα/sinα= (sinα)^2+(cosα)^2/sinαcosα=1/sinαcosα=3
sinαcosα=1/3
tan^2α+cot^2α=(sinα)^4+(cosα)^4/(sinαcosα)^2
=(sin^2 α+cos^2 α)^2-2sin^2 αcos^2 α/(sinαcosα)^2=7
tanα+cotα=sina/cosa + cosa/sina
=1/(sina*cosa)=3
所以sinαcosα=1/3
tan^2α+cot^2α=(tana+cota)^2-2
=9-2
=7
∵tanα+cotα=3,∴sinα/cosα+cosα/sinα=3,通分得:1/(sinαcosα)=3,∴sinαcosα=1/3
把tan^2α,cot^2α各自化成弦函数在通分得:[(sinα)^4+(cosα)^4]/[(sinα)^2·(cosα)^2].
∵(sinα)^4+(cosα)^4=1-2(sinα·cosα)^2,代入上式,∴tan^2α+cot^2...
全部展开
∵tanα+cotα=3,∴sinα/cosα+cosα/sinα=3,通分得:1/(sinαcosα)=3,∴sinαcosα=1/3
把tan^2α,cot^2α各自化成弦函数在通分得:[(sinα)^4+(cosα)^4]/[(sinα)^2·(cosα)^2].
∵(sinα)^4+(cosα)^4=1-2(sinα·cosα)^2,代入上式,∴tan^2α+cot^2α=7.
来个简便的:tan^2α+cot^2α =(tanα+cotα)^2-2 =3^2-2 =7
收起
tanα+cotα=(sinα/cosα)+(cosα/sinα)
=(sinα)^2/cosαsinα + (cosα)^2/cosαsinα
=(sinα)^2+(cosα)^2/cosαsinα
=1/cosαsinα=3
∴cosαsinα=1/3
(tanα+cotα)^2=(tanα)^2+(cot)^2+2tanαcotα
=(tanα)^2+(cotα)^2+2=9
∴(tanα)^2+(cotα)^2=7