一道极限题(关联三角函数)lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)lim(x—>0)(cosx-1)/x为啥我算这总是无穷大?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:21:06

一道极限题(关联三角函数)lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)lim(x—>0)(cosx-1)/x为啥我算这总是无穷大?
一道极限题(关联三角函数)
lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)
lim(x—>0)(cosx-1)/x
为啥我算这总是无穷大?

一道极限题(关联三角函数)lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)lim(x—>0)(cosx-1)/x为啥我算这总是无穷大?
罗比塔法则
1.cosπ/3=1/2
2.0
也可直接做
lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)
=lim(x—>π/3)2sin(x/2-π/6)cos(x/2+π/6)/(x-π/3)
=lim(x—>π/3)2sin(x/2-π/6)cos(x/2+π/6)/2(x/2-π/6)
因为x—>0,sinx/x=1

sin(x/2-π/6)/(x/2-π/6)=1
lim(x—>π/3)2sin(x/2-π/6)cos(x/2+π/6)/2(x/2-π/6)
=lim(x—>π/3)cos(x/2+π/6)
=cosπ/3
=1/2
lim(x—>0)(cosx-1)/x
=lim(x—>0)-2(sinx/2)^2/x
因为x—>0,sinx/x=1
lim(x—>0)-2(x/2)^2/x
=0

用洛必干塔法则:
lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)=lim(x—>π/3)cosx=1/2
lim(x—>0)(cosx-1)/x=lim(x—>0)sinx=0

(cosx-1)/x
=-2[sin(x/2)]^2/x ->0, x->0
第一个式子可令y=x-π/3,然后展开得
(sinx-sinπ/3)/(x-π/3)
=[sinycos(π/3)+cosysin(π/3)-sin(π/3)]/y ->1/2, y->0
你算出无穷大,估计忘了分子上还要减去sin(π/3)

利用洛必达法则~~分子分母分别就导可知:
1. cosπ/3
2. 0

lim(x—>π/3)(sinx-sinπ/3)/(x-π/3)的实际含义是函数在π/3的切线的斜率,∴ 原式=cosπ/3=0.5
第二个式子表示lim(x—>0)(cosx-cos0)/(x-0).也就是函数y=cosx在x=0处的导数值,∴原式=cos0=1