大家帮我解析这个常微分方程,尤其是右边怎么积分d(x+y)/(x+y)=[p(t)+q(t)]dtd(x-y)/(x-y)=[p(t)-q(t)]dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:44:25

大家帮我解析这个常微分方程,尤其是右边怎么积分d(x+y)/(x+y)=[p(t)+q(t)]dtd(x-y)/(x-y)=[p(t)-q(t)]dt
大家帮我解析这个常微分方程,尤其是右边怎么积分
d(x+y)/(x+y)=[p(t)+q(t)]dt
d(x-y)/(x-y)=[p(t)-q(t)]dt

大家帮我解析这个常微分方程,尤其是右边怎么积分d(x+y)/(x+y)=[p(t)+q(t)]dtd(x-y)/(x-y)=[p(t)-q(t)]dt
定义e²=exp(2)即e^x=exp(x)
d(x+y)/(x+y)=[p(t)+q(t)]dt
d(x-y)/(x-y)=[p(t)-q(t)]dt
积分得
ln(x+y)=∫[p(t)+q(t)]dt
ln(x-y)=∫[p(t)-q(t)]dt
(x+y)=exp(∫[p(t)+q(t)]dt)
(x-y)=exp(∫[p(t)-q(t)]dt)
x=1/2{exp(∫[p(t)+q(t)]dt)+exp(∫[p(t)-q(t)]dt)}
y=1/2{exp(∫[p(t)+q(t)]dt)-exp(∫[p(t)-q(t)]dt)}