线性代数,证明一一映射Let T be the linear transformation whose standard matrix is given.Decide if T is a one-to-one mapping and if T maps R^3 onto R^3.Justify your answer.T:| 1 1 1 || 4 1 2 || 1 3 1 |

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:17:59

线性代数,证明一一映射Let T be the linear transformation whose standard matrix is given.Decide if T is a one-to-one mapping and if T maps R^3 onto R^3.Justify your answer.T:| 1 1 1 || 4 1 2 || 1 3 1 |
线性代数,证明一一映射
Let T be the linear transformation whose standard matrix is given.Decide if T is a one-to-one mapping and if T maps R^3 onto R^3.Justify your answer.
T:
| 1 1 1 |
| 4 1 2 |
| 1 3 1 |

线性代数,证明一一映射Let T be the linear transformation whose standard matrix is given.Decide if T is a one-to-one mapping and if T maps R^3 onto R^3.Justify your answer.T:| 1 1 1 || 4 1 2 || 1 3 1 |
det(T)=1+12+2-1-6-4=4>0
so T is a one-to-one mapping,and map R^3 to R^3

线性代数,证明一一映射Let T be the linear transformation whose standard matrix is given.Decide if T is a one-to-one mapping and if T maps R^3 onto R^3.Justify your answer.T:| 1 1 1 || 4 1 2 || 1 3 1 | 怎么证明可逆映射是一一映射 求教如何证明一一映射就是单满映射 一一映射是不是函数? 什么是一一映射 映射与一一映射的区别? 映射和一一映射有什么区别? 任意两个无限集之间是否可以构成一一映射?如何证明? 一一映射与一一对应的区别? 什么叫做一一映射?打错字了,是“一一”映射 函数就是一一映射吗? 什么是一一对应的映射? 关于线性变换,一一对应,映射的证明题证明:设有一个线性变换T,这个T会把任意一个线性无关的向量x,x属于U,变换之后对应到另一个线性无关的向量y,y属于V.那么我们说T必须是1-1(单射)证明 线性代数的可对角化证明题~Let A be a 4*4 matrix , prove that if A has 4 linearly independent eigenvectors, so does A^T证明:A是可对角化的, 存在 P·α·P^-1 A P=D 然后可逆 然后就不知道了~ 线性代数可对角化的证明题~Let A be a 4*4 matrix ,prove that if A has 4 linearly independent eigenvectors,so does A^T证明:A是可对角化的,存在 P·α·P^-1 A P=D然后可逆P·α 是哪儿来的~ 关于映射,你映射的证明题原题是If f:X->Y is one to one and onto,then f^-1:Y->X is one to one and onto.如果翻译正确的话,应该是,如果f:X->Y 是一一映射,并且是满射,证明f的逆映射Y->X也是 是一一映射,并且是 映射和一一映射的区别,什么样的算是函数?是一一映射吗? 函数是一一映射还是映射?问题补充: