lim{[n*(n+1)*……*(2n-1)]^1/n}/n n->无穷答案是4/e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:40:48
lim{[n*(n+1)*……*(2n-1)]^1/n}/n n->无穷答案是4/e
lim{[n*(n+1)*……*(2n-1)]^1/n}/n n->无穷
答案是4/e
lim{[n*(n+1)*……*(2n-1)]^1/n}/n n->无穷答案是4/e
lim(1/n+2/n+3/n+4/n+5/n+……+n/n)=lim(1/n)+lim(2/n)+……+lim(n/n)成立吗?(n趋近于无穷大)为什么不成立?
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
lim{[n*(n+1)*……*(2n-1)]^1/n}/n n->无穷答案是4/e
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
lim (1+2+……n)/(n+2)-n/2 n→无限
求当n→∞,Lim(1+2+3+4+……+(n-1)+n)/n
lim(1/n+1 +1/n+2 +…+1/n+n)
若lim(1+2+…+n)/n^2,
lim (n/(n²+1)+n/(n²+2²)+…………+n/(n²+n²))=?n趋向无穷大
lim n→∞[1/(n+1)+1/(n+2)+…+1/(n+n)]=?求极值!lim [1/(n+1)+1/(n+2)+…+1/(n+n)]=?n→∞
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n趋向于无穷 过程及我的错误点
lim(1/(n^2+1)+2/(n^2+2^2)+……+n/(n^2+n^2))
求极限lim(1/2n+3/4n+……+(2^n-1)/(2^n*n))
Lim(1/n^3 +2^2/n^3 +3^2/n^3+…+n^2/n^3)等于
lim(n+3)(4-n)/(n-1)(3-2n)
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(2^n+3^n)^1
(n趋向无穷)