lim (1+2+……n)/(n+2)-n/2 n→无限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:49:50
lim (1+2+……n)/(n+2)-n/2 n→无限
lim (1+2+……n)/(n+2)-n/2 n→无限
lim (1+2+……n)/(n+2)-n/2 n→无限
lim(n-> ∞)[(1+2+...+n)/(n+2)- n/2]
=lim(n-> ∞)[n(n+1)/[2(n+2)]- n/2]
=lim(n-> ∞)[n(n+1)-n(n+2) ]/[2(n+2)]
=lim(n-> ∞)-n/[2(n+2)]
=lim(n-> ∞)-1/[2(1+2/n)]
=-1/2
1+2+……n=(1+n)*n/2
lim (1+2+……n)/(n+2)-n/2=lim-n/(2n+4)=-1/2
lim(1/n+2/n+3/n+4/n+5/n+……+n/n)=lim(1/n)+lim(2/n)+……+lim(n/n)成立吗?(n趋近于无穷大)为什么不成立?
lim (1+2+……n)/(n+2)-n/2 n→无限
lim (n/(n²+1)+n/(n²+2²)+…………+n/(n²+n²))=?n趋向无穷大
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n趋向于无穷 过程及我的错误点
lim(x→∞)1+2+3+…+n/(n+2)(n+4)=?
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n趋向于无穷
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
lim n→∞【1/(n²+1)+2/(n²+2²)+…+n/(n²+n²)=
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
求极限lim(n-1)^n/(n-2)^n(n到无穷大)
lim 4n^2+2/3n^2+1 (n→oo)lim (√(n+1)- √(n)) (n→oo)lim √x+△x - √x / △x (△x→0)lim 1+2+…+n / n^2 (n→oo)
lim(x+x^2+……+x^n-n)/(x-1)
若lim(1+2+…+n)/n^2,
lim 1/n(1+1/2)(1+1/3)……(1+1/n)lim(2/n^2+5/n^2+……+(3n-1)/n^2)
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
关于极限的计算lim n趋于0【(1+2+3+…+n)/n - n/2】 lim n趋于0 (1+ 1/2 + 1/4 + … +2^n )写写过程,谢谢~!