怎样证明sin20°>1/3 :证明sin20°> 1/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:05:59

怎样证明sin20°>1/3 :证明sin20°> 1/3
怎样证明sin20°>1/3
:证明sin20°> 1/3

怎样证明sin20°>1/3 :证明sin20°> 1/3
sin[30°]=1/2,
sin'[x]=cos[x],
sin'[x]在x∈[0,π/2]范围内是减函数,
即曲线在该区间内,斜率虽然为正但是一直减小.
sin[10°]-sin[0°]
>sin[20°]-sin[10°]
>sin[30°]-sin[20°]
所以
sin[20°]-sin[0°]>2(sin[30°]-sin[20°])

(sin[20°]-sin[0°])+(sin[30°]-sin[20°])=sin[30°]-sin[0°]=sin[30°]=1/2,
所以
sin[20°]-sin[0°]>1/2*2/3=1/3.

请先证明
sinx/x 是减函数。
然后有sin20°/2>sin30°/3
so sin20°>1/3