在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:32:28

在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值.
在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,
求异面直线SC与AB所成的角的余弦值.

在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值.
SA⊥AC,SA⊥AB
所以SA⊥BC
又因为AC⊥BC
所以BC⊥平面SAC
所以异面直线SC与AB所成的角即为SC与AC的夹角∠SCA
cos∠SCA=AC/SC
由BC⊥平面SAC得:BC⊥SC,即SC=根号(SB^2-BC^2)=4
所以cos∠SCA=AC/SC
=2/4
=1/2
即异面直线SC与AB所成的角的余弦值为1/2

这是一个错误的题目,SB⊥BC是错误的
因为SC⊥BC
证明:首先∠SAB=∠SAC=90°,
所以就有SA⊥面ABC
所以SA⊥BC
又因为∠ACB=90°
所以就有BC⊥面SAC推出BC⊥SC
因为SBC构成三角形,一个三角形内不能有两个直角(你懂得)
至于二面角A-AB-S也不知道是哪两个面
对于第三问,你只要以A点为原...

全部展开

这是一个错误的题目,SB⊥BC是错误的
因为SC⊥BC
证明:首先∠SAB=∠SAC=90°,
所以就有SA⊥面ABC
所以SA⊥BC
又因为∠ACB=90°
所以就有BC⊥面SAC推出BC⊥SC
因为SBC构成三角形,一个三角形内不能有两个直角(你懂得)
至于二面角A-AB-S也不知道是哪两个面
对于第三问,你只要以A点为原点建立坐标系,根据已知条件即可求出各个点的坐标并运用公式
求面SBC的法向量再求它与AB的余弦值就求出来了

收起

如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=根号3,SB=根号23,求二面角S-BC-A正切值 在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形.∠BAC=90°,O为BC中点,求证SO⊥平面ABC 如图,在三棱锥S-ABC中,M,N分别为三角形SAB和三角形SBC的重心.求证MN平行平面ABC. 二道几何题 1.如图,PA⊥平面ABC,平面PAB⊥平面PBC,求证:AB⊥BC2.在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO⊥平面ABC,求证:∠SAB=∠SAC2图 如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.求证:(1)SO⊥平面ABC(2)求二面角A-SC-B的余弦值空间有图 在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值. ..在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值. 在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO 垂直 平面ABC 求证 角SAB=角SAC 在三棱锥S ABC中,SA⊥平面ABC,平面SAB⊥平面SBC ,求证:AB⊥BC. 在三棱锥s-abc中,sa⊥面abc看,面sab⊥面sbc,求证ab⊥bc 在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小 在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长为 在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长 如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值 高一空间几何问题 高手快来帮忙啊~在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90度,且AC=BC=5,SB=5√5.(1)证明:SC⊥BC(2)求侧面SBC与底面ABC所成二面角的大小(3)求三棱锥的体积V 如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SC⊥SC,且SA,SB,SC和底面ABC所成的角分别为a1,a2,a3,三个侧面△SAB,△SAC,△SAB面积为S1,S2,S3.类比三角形中的正弦订立,给出空间情形的一个猜想并证明. 如图四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°. (1)当SA=a时,求SA在平面ABC内的射影长, (2)求SA与平面ABC交角的大小过s作底面射影H,连接AH,则 AH为角BAC的平 在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,该改正三棱柱表面积为最好有图,