如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:56:13
如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值
如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
1.证明:SO⊥平面ABC.
2.求二面角A-SC-B的余弦值
如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值
⑴.设AB=2.则BC=2√2.BO=√2,
SO=√(2²-2)=√2.AO=√(2²-2)=√2.SA=2.
SO²+AO²=AS².∴∠AOS=90°,又SO⊥BC.∴SO⊥平面ABC.
⑵.设E为SC的中点.则AESC.
看BSC的边,得∠BSC=90°,AE⊥BC.
∠AEO为所求二面角的平面角.
AE=√3.OE=1,OA=√2.
cos∠AEO=(3+1-2)/2√3=1/√3.
所求二面角A-SC-B的余弦值=1/√3.
如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值
在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形.∠BAC=90°,O为BC中点,求证SO⊥平面ABC
在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形....在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形.1)求
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.求证:(1)SO⊥平面ABC(2)求二面角A-SC-B的余弦值空间有图
三菱锥S-ABC中,S'是S在ABC内的射影,若S'到三个侧面距离相等,求证S'是底面三角形的
如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SC⊥SC,且SA,SB,SC和底面ABC所成的角分别为a1,a2,a3,三个侧面△SAB,△SAC,△SAB面积为S1,S2,S3.类比三角形中的正弦订立,给出空间情形的一个猜想并证明.
在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,角BAC=90°,O为BC的重点.(1)、证明:SO垂直面ABC.(2)、求二面角A-SC-B的余弦值.
在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,该改正三棱柱表面积为最好有图,
在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,该改正三棱柱表面积为最好有图,
如图,在三棱锥S-ABC中,M,N分别为三角形SAB和三角形SBC的重心.求证MN平行平面ABC.
如图,棱锥S-ABCD中,AB平行CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1如图,棱锥S-ABCD中,AB平行CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1证明:SD⊥平面SAB求AB与平面SBC所成角的正弦值.
在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,则正三棱S-ABC外接球的表面积是
如图四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°. (1)当SA=a时,求SA在平面ABC内的射影长, (2)求SA与平面ABC交角的大小过s作底面射影H,连接AH,则 AH为角BAC的平
如图,四棱锥S-ABCD中,底面ABCD为菱形,侧面SBC⊥底面ABCD,已知角ABC=60度,AB=SB=SC=2 (1)证明:BC⊥SA (2)求直线SD与平面SAB所成角的正弦值
如图,四棱锥S-ABCD中,底面ABCD为菱形,侧面SBC垂直底面ABCD.已知角ABC=60度,AB=SB=SC=2 (1)证明:BC垂直SA; (2)求直线SD与平面SAB所成角的正玄值
如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1,SD⊥平面SAB求AB与平面SBC所成的角的正弦值
如图,棱柱S-ABCD中,AB平行CD,BC垂直CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1,证明:SD垂直平面SAB求AB与平面SBC所成得角的大小
如图,在三菱柱ABC—A1B1C1中,一直BC=1,BB1=2角BCC1=90度,AB垂直于侧面BB1C1C (1)求直线C1B与底面ABC所成的正弦值;(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA垂直于EB1