已知a-b=b-c=1,ab+bc+ca=1,求a²+b²+c²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:37:25

已知a-b=b-c=1,ab+bc+ca=1,求a²+b²+c²
已知a-b=b-c=1,ab+bc+ca=1,求a²+b²+c²

已知a-b=b-c=1,ab+bc+ca=1,求a²+b²+c²

由题设可知
a-b=1,
b-c=1
两式相加,可得
a-c=2
∴6
=1+1+4
=(a-b)²+(b-c)²+(a-c)²
=2(a²+b²+c²)-2(ab+bc+ca)
=2(a²+b²+c²)-2
∴a²+b²+c²=4

由a-b=b-c=1得a=b+1,c=b-1,代入第二个式子中得(b+1)b+b(b-1)+(b-1)(b+1)=1,解得3b^2=2.在看最后一式子,a^2+b^2+c^2=(b+1)^2+b^2+(b-1)^2=3b^2+2=4

a-b=b-c=1 a-c=2 a²+b²+c²=[(a-b)^2+(b-c)^2+(c-a)^2+2ab+2bc+2ca]/2=4